| | B.Sc. [Se | mester-V] Exar
s US05CM | ninations: 2019-20
TH03 Max | 0 | |----------|--|---|---|-----------------------| | Date: | : 15/11/2019, Friday | - | | am - 01.00 pm | | Instru | Sardar Patel University, Vallabh Vidyanagar B.Sc. [Semester-V] Examinations: 2019-20 bject: Mathematics US05CMTH03 Max. Marks: 70 Metric Spaces te: 15/11/2019, Friday Timing: 10.00 am - 01.00 pm truction: The symbols used in the paper have their usual meaning, unless specified. 1. Answer the following by choosing correct answers from given choices. 1. Every Cauchy sequence is [A] convergent [B] is not always convergent [C] divergent [D] none 2. A cluster point of the set $\{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots, \}$ is [A] 0 [B] 1 [C] 2 [D] 3 3. For a non-empty set X , a function d defined by $d: X \times X \to R$ where $d(x,y) = \begin{cases} 0 \text{ ; if } x \neq y \\ -1 \text{ ; when } x = y \end{cases}$ is [A] a usual metric [B] a discrete metric [C] an indiscrete metric [D] none 4. In a metric space (M, ρ) , its subsets M and ϕ are [A] open but not closed [B] closed but not open [C] open as well as closed [D] neither open nor closed 5. In which of the following every closed subset is open also? [A] R^1 [B] R_d [C] R^2 [D] C 6. In the metric space $M = [0, 1]$ with usual metric, $B[\frac{1}{2}, \frac{1}{4}] = [A] [0, \frac{1}{4}]$ [B] $(\frac{1}{4}, 1)$ [C] $(0, \frac{1}{2})$ [D] $(0, \frac{1}{4})$ 7. If $f(x) - f(y) < 0.9 x - y \forall x, y \in R^1$, for a function $f: R^1 \to R^1$ then on R^1 , f is [A] a contraction [B] a homeomorphism [C] discontinuous [D] none [8. For a subset $A = \{-2, 0, 2\}$ of R^1 , $diam(A) = \{A\}$ [C] 2 [D] 4 [9. If there is at least one open cover of a metric space M which does not admit a finite sub cover then M [A] is compact [B] has Heine-Borel property [C] is not compact [D] none | | | | |
O+ 1 | A newer the following | y by choosing corre | ct answers from given | choices. | | | Every Cauchy seque | nce is | | | | [2] | A cluster point of th [A] 0 | ne set $\{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots$ [B] 1 | $\left\{ C\right\} =0$ [C] 2 | [D] 3 | | [3] | For a non-empty set | X, a function d de | efined by $d: X \times X \rightarrow$ | R where | | | | $d(x,y) = \begin{cases} 0; \\ -1; \end{cases}$ | if $x \neq y$ when $x = y$ | | | | | [B] a discrete metri | c [C] an indiscrete me | etric [D] none | | [4] | [A] open but not closed [B] closed but not open | | | | | [5] | | | | [D] C | | [6] | In the metric space [A] $[0, \frac{1}{4}]$ | $M = [0, 1]$ with usu [B] $(\frac{1}{4}, 1)$ | and metric, $B[\frac{1}{4}, \frac{1}{4}] = [C](0, \frac{1}{2})$ | [D] $(0,\frac{1}{4})$ | | [7] | R^{1}, f is | | | | | [8] | For a subset $A = \{ \{ A \} \mid 0 \}$ | $\{-2,0,2\} \ ext{of} \ R^1, \ dia \ [B] \ -2$ | m(A) = [C] 2 | [D] 4 | | [9] | | | | | | [10] | The range of a cont [A] unbounded | inuous function f (B) compact | defined on [1, 2] is [C] disconnected | [D] none | 5 5 5 ## Q: 2. Answer TEN of the following. - [1] Show that if $\{x_n\}_{n=1}^{\infty}$ is a convergent sequence in R_d then there exists a positive integer N such that $x_N = x_{N+1} = x_{N+2} = \dots$ - [2] Define $d: \mathbb{R} \longrightarrow \mathbb{R}$ by $d(x,y) = |x^2 y^2|$. Check whether d is a metric or not. - [3] Show that $\rho: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, defined by $\rho(x,y) = |x-y|$, is a metric on \mathbb{R} - [4] Let A and B be subsets of a metric space M. If $A \subset B$, then prove that $\overline{A} \subset \overline{B}$. - [5] Define: (i) Connected Set (ii) Characteristic function - [6] Prove that in any metric space (M, ρ) , the set M and ϕ are closed sets. - [7] Define: (i) Bounded set (ii) Diameter of a set - [8] Let $T: [0, \frac{1}{3}] \to [0, \frac{1}{3}]$ be defined by $T(x) = x^2$, $\forall x \in [0, \frac{1}{3}]$. Prove that T is a contraction on $[0, \frac{1}{3}]$. - [9] Prove that every contraction mapping is continuous. - [10] Show that a finite subset of \mathbb{R}_d is compact. - [11] Show that the range of a continuous function, on a compact metric space, is bounded. - [12] Give an example of a function which is one-one, onto, continuous but its inverse is not continuous. - Q: 3 [A] Define Cauchy sequence. Also prove that if $\{s_n\}_{n=1}^{\infty}$ is a convergent sequence of points in a metric space (M, ρ) then $\{s_n\}_{n=1}^{\infty}$ is Cauchy. Is the converse true? Justify. - [B] Let (M, d) be a metric space and let $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Then prove that d_1 is a metric on M ## OR - Q: 3 [A] Let (M, ρ) be a metric space and let a be a point in M. Let f and g be real valued functions whose domains are subsets of M. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = N$ then prove that $\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$ - [B] prove that a real valued function f is continuous at $a \in R$ iff whenever $\{x_n\}_{n=1}^{\infty}$ is a sequence of real numbers converging to a then the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to f(a). | Q: 4. | Let (M, ρ) be a metric space and let A be a subset of M . Then prove that, if A has either one of the following property it has the other. (a) It is impossible to find nonempty subsets A_1 and A_2 of M such that $A = A_1 \cup A_2$, $\overline{A_1} \cap A_2 = \phi$, $A_1 \cap \overline{A_2} = \phi$. (b) when (A, ρ) is itself regarded as a metric space, then there is no set except A and ϕ which is both open and closed in (A, ρ) . | 10 | | | | |------------|--|----|--|--|--| | OR | | | | | | | Q: 4 [A | If (M, ρ) is a metric space and A is a proper subset of M then prove that the subset G_A of A is open in (A, ρ) iff there exists an open subset G_M of M such that $G_A = A \cap G_M$. | 5 | | | | | [] | B] Prove that a subset G of the metric space M is open iff compliment of G is closed. | 5 | | | | | Q: 5 [A | Let (M, ρ) be a metric space. Then prove that a subset A of M is totally bounded iff every sequence of points of A contains a Cauchy subsequence. | 5 | | | | | [1 | If the subset A of the metric space (M, ρ) is totally bounded, then prove that A is bounded. | 5 | | | | | | OR | | | | | | Q: 5 [A | If (M, ρ) is a complete metric space and A is a closed subset of M, then prove that (A, ρ) is also complete. | 5 | | | | | [1 | B] State and prove Picard's fixed point theorem. | 5 | | | | | Q: 6 [A | If M is a compact metric space, then prove that M has the Heine-Borel property. | 5 | | | | | [] | If a real valued function f is continuous on a compact metric space M , then prove that f attains the maximum and the minimum values at some points of M . | 5 | | | | | | OR | | | | | | Q: 6 [A | Let f be a one-one, continuous function on a compact metric space (M_1, ρ_1) onto (M_2, ρ_2) . Then prove that f^{-1} is continuous and hence f is a homeomorphism of M_1 onto M_2 . | 5 | | | | | [] | B] Prove that if f is a continuous function from a compact metric space M_1 into a metric space M_2 then the range $f(M_1)$ of f is also compact. | 5 | | | |