(b) p < 1

(b) 3

(b) 2

(a) extreme point

Q.2 Attempt any ten in short:

is that $limu_n = 0$.

(d) none of these

(8) $\lim_{x \to 1} \lim_{y \to -1} \frac{4x}{x^2 + y^2}$

(a) 1

(c) p > 1

(b) not an extreme point

(1) Show that a necessary condition for convergence of an infinite series $\sum u_n$

(c) 2

(9) A sequence $\{1, 0, 2, 0, 3, 0, 4, 0, ...\}$ has as a limit point.

(10) A stationary point is called saddle point of function f if it is...

(c) 0

(d) p = 0

 $(c)f_x(a,b) = 0$

(PTO)

(d) not exists

[51]

 (2) State necessary condition for f(x, y) to have an extreme value at (a, b) (3) State D'Alembert's Ratio test. (4) Define: Neighbourhood of a point of two variable. (5) Define first order partial derivatives. If f(x, y) = 2x² - xy + 2y², the find f_x and f_y at point (1, 2). 	
(6) By using definition of limit, show that $\lim_{n\to\infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$.	
(7) Prove that every convergent sequence is bounded.	
(8) Prove that $(x,y) \xrightarrow{lim} (0,0) \frac{2xy^2}{x^2+y^4}$ does not exists.	
(9) Prove that $(x, y) \xrightarrow{lim} (4, \pi) x^2 \sin \frac{y}{x} = 8\sqrt{2}$.	
(10) Test for convergence the series $\sum \frac{1}{n^{1+\frac{1}{n}}}$.	
(11) If $\sum u_n = u$ and $\sum v_n = v$, then prove that $\sum (u_n + v_n) = u + v$. (12) Define: Repeated limits and continuity of a function of two variables.	
	[6]
(b) Show that every convergent sequence is bounded and has a unique limit.	[4]
\mathbf{OR}	
Q.3(c) Show that the necessary and sufficient condition for the convergence of a sequence $\{S_n\}$ is for each $\epsilon > 0$, there exist a positive integer m such that $ s_{n+p} - s_n < \epsilon$, $\forall n \geq m \land p \geq 1$.	[6]
(d) If $n \xrightarrow{\lim_{n \to \infty} \infty} a_n = a$ and $a_n > 0$, then prove that $a \ge 0$.	[4]
Q.4(a) If $\sum u_n$ and $\sum v_n$ are two positive term series such that $n \to \infty \frac{u_n}{v_n} = l$, where l is anon-zero finite number, then show that the two series	[6]
(b) If $\sum_{n=1}^{\infty} u_n = u$, then prove that $\sum_{n=0}^{\infty} u_n = u + u_0$ and $\sum_{n=2}^{\infty} u_n = u - u_1$.	[4]

Q.3(a

(d) Show that the series $\frac{1}{(\log 2)^p} + \frac{1}{(\log 3)^p} + \dots + \frac{1}{(\log n)^p} + \dots$, diverges for p > 0.[4] Q.5(a) Show that for the functions $f(x,y) = \begin{cases} x \sin(\frac{1}{y}) + y \sin(\frac{1}{x}), & xy \neq 0 \\ 0, & xy = 0 \end{cases}$ [6]

limit exist at the origin but the repeated limits do not.

(b) Show that f(xy, z - 2x) = 0 satisfies, under suitable conditions, the equation $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 2x$. What are these conditions?

Q.4(c) State and prove Cauchy's root test.

[6]

[4]

- Q.5(c) Prove that, by the transformation $u=x-ct, \ v=x+ct$, the partial differential equation $\frac{\partial^2 z}{\partial t^2}=c^2\frac{\partial^2 z}{\partial x^2}$ reduces to $\frac{\partial^2 z}{\partial u\partial y}=0$.

 (d) Show that the function [6]

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is continuous at the origin.

[4]

Q.6(a) State and Prove Taylor's theorem.

[6]

(b) Prove that the first four terms of the Maclaurin expansion of $e^{ax}\cos by$ [4]are

 $1 + ax + \frac{a^2x^2 - b^2y^2}{2!} + \frac{a^3x^3 - 3ab^2xy^2}{3!}.$

Q.6(c) Investigate the maxima and minima of the function

[6]

 $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy.$ (d) Expand $x^2y + 3y - 2$ in powers of x - 1 and y + 2. [4]

• . .