. Sc

Sardar Patel University

B.5c. Sem-V Mathematics

April, usoscmthos

Time:	3	hours
, ,	_	

11/04/2019, Thursday

Total: 70 marks

Q-1 MCQs

10.00 am to 01.00 PM

[10]

- 1. LCM of the two numbers 25 & 30 is_____
 - A: 5

B. 25

C. 30

- D. 150
- 2. Which of the following number is composite number?

A. 11111

B. 111111

C. 111

D. 11

3. If sum of all positive divisors of a is denoted by S(a) then, S(20) =

A. 6

B. 20

C. 42

D. 26

4. If μ denotes the Mobious function, then $\mu(12) = \underline{\hspace{1cm}}$

A. 0

B.

C. -1

D. None of the above

5. (a,b,c) =_____

A. (a,b)

B. (b,c)

C. ((a,b),c)

- D. (a+b,c)
- 6. If (a,b)=1 then there exist $x,y\in Z$ such that ax+by=

A. 1

B. 0

C. a

D. b

7. $3^{80} \equiv (mod 5)$

A. 0

B. 1

C. 3

D. 5

8. What is 10th Fibonacci number?

A. 34

B. 55

C. 89

D. 21

9. W	hich of the following number	is divis	ible by 3?	
A.	1234	В.	8451	
C.	35488	D.	8454	
10. If	$52x \equiv 5 \pmod{7}$ then $x = $	·	•	
Α.	5	В.	3	
C.	2	· D.	55	
Q-2 Att	empt any Ten short questions	5		[20]
1. Fi	nd, gcd(525,231).			
	rite the formula for $P(a)$, the	produc	t of all positive divisors of a	
	efine: Fermat's number.	p, caa.	or an positive arrisors or a.	
	efine: Fibonacci number.			
	efine: Reduced Residue Syster	n mode	ılo m	
	ate Euclidean algorithm.	ii iii cac	10 m.	
	$a \mid bc \& (a, b) = 1$ then prove	that al	C	
	nd number of multipliers of 7	•		
	nd 2(50!).	arnong	integers from 200 to 500.	
	efine equivalent relation.			
	That is $\phi(625)$?			
	tate Chinese theorem.			
12. 3	tate cinnese theorem.			
Q-3 (a)	State and prove fundamenta	l theor	em of divisibility.	05
(b)	If $(a, b) = d$ then prove that $ax + by = d$.	there	exists $x, y \in Z$ such that	05
	OI		•	
	Prove that $a, b = a$			05
(b)	• •		t there exist no positive	05
	integer a, b such that $a^2 = p$	₩,	•	
Q-4 (a)	Prove that every prime facto			05
(1.3	of the form $2^{n+2}t + 1$ for so			
(b)	In usual notation prove that	(a) < a	$a \sqrt{a}, \forall a > 2$.	05
(a)	If $a>1$ then prove that $\sum_{d/2}$		$=0-\sum_{a}u\left(\frac{a}{a}\right)$	05
	1.4×1 then prove that $\angle d$	an(u)	$- \circ - \Delta a/a \mu \binom{d}{d}$	

- **(b)** In usual notation prove that, $u_{m+n} = u_{m-1}u_n + u_m u_{n+1} \forall m,n \in \mathbb{N}$
- **Q-5 (a)** State and prove the necessary and sufficient condition for a positive integer *n* can be divided by 3.
 - (b) Prove that positive integer solution of $x^{-1} + y^{-1} = 05$ z^{-1} , (x, y, z) = 1 is of the form x = a(a + b), y = b(a + b), z = ab where a, b > 0, (a, b) = 1.

OR

- (a) Prove that the integer solution of $x^2 + 2y^2 = z^2$, (x, y) = 1 can 05 be expressed as, $x = \pm (a^2 2b^2)$, y = 2ab, $z = a^2 + 2b^2$.
- (b) Find positive integer solution of following equation: 057x + 9y = 213
- **Q-6 (a)** Find all positive integers $m \ \& \ n$ such that $\phi(mn) = \phi(m) + \phi(n)$.
 - (b) Let $m\equiv 0 \pmod{2}$. If $a_1,a_2,\ldots,a_n \otimes b_1,b_2,\ldots,b_n$ are CRS modulo m then prove that $a_1+b_1,a_2+b_2,\ldots,a_m+b_m$ is not CRS modulo m.

OR

- (a) If (a,m)=d (d>1) then prove that $ax+b\equiv 0 \pmod m$ has 05 solution if and only if d/b. Also prove that it has 'd' solutions $x_i=a+i\frac{m}{d} \pmod m$ where i=0,1,2,...,d-1. In which $x\equiv a \pmod{\frac{m}{d}}$ is unique solution of $\frac{a}{d}x+\frac{b}{d}\equiv 0 \pmod{\frac{m}{d}}$
- (b) Solve the following system of congruent equations $x \equiv 2 \pmod{3}, x \equiv 3 \pmod{5}, x \equiv 2 \pmod{7}$

