Sardar Patel University , Vallabh Vidyanagar

В.	Sc. Examination)ns :2018-19	•
Subject : Mathematics	US05CMTHO1	. [Real Analysis]	Max.Marks: 70
Date: 5/4/2019 Frid	ey .	Time:10:0	0A.M. TO 01:00P.M
Q.1 Choose the correct opt	ion for each o	the following.	[10]
(1)Which of the follow	ng is not an or	dered field?	
(a) Q (b) R	(c) C (d) none of these	
(2) The greatest number	er of a set ,if e	kists is	
(a) the supremum o	f the set (b) i	nfimum of the set	
(c) not unique	(d)	none	
(3) The supremum of	$\left(\frac{1}{n}/n \in N\right)$ is		
(a) 0 (b) 1	(c) 2	(d) none	
(4) In $\left(0,\frac{\pi}{2}\right)$ function S	(x) is		
(a) strictly increasi	ng (b) s	trictly decreasing	
(c) stationary	(d) r	ione	٠.
(5) The derived set of	(0,1) is		·
(a) [0,1] (b) (),1] (c) [0,1)	(d) (0,1)	
(6) The interior of Z	s		
(a) N , (b)	Z (c). Ø	(d) R	
(7) If $\lim_{x \to a} f(x)$ exi	sts but f(a) is n	ot defined then f i	s said to have a

- $discontinuity \ of$
 - (a) first type
- (b) second type
- (c) removable type
- (d) first type from left

- (8) The continuous function on closed interval is
 - (a) not bounded
- (b) open set

(c) bounded

- (d) none
- (9) The condition that f is strictly decreasing at c is
 - (a) f'(c) < 0

(b) f'(c) > 0

(c) f'(c) = 0

- (d) none
- (10) Which of the following functions is not derivable at 0?
 - (a) [x]
- (b) sinx
- (c) cosx
- (d) tanz

Q.2 Attempt any Ten.

[20]

- (1) Define: A Complete Ordered Field.
- (2) Prove that supremum of a set S of numbers, if it exists, is unique.
- (3) Find the g.l.b and l.u.b of $\left\{1 + \frac{1}{n^3} / n \in N\right\}$ if they exist.
- (4) Prove that every open interval is an open set.
- (5) Define: An interior point of a set.
- (6) Porve that C(-x) = C(x), $\forall x \in R$.
- (7) Find $\lim_{x \to 0} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$ if it exists.
- (8) Define: Limit of a function.
- (9) Give an example of a function having discontinuity of first kind at some point.
- (10) Examine whether the function $f(x) = \begin{cases} x \text{ , } & \text{if } 0 \leq x < 1 \\ 1 \text{ , } & \text{if } x \geq 1 \end{cases}$ is differentiable at x = 1 or not.
- (11) Prove that a function which is uniformly continuous on

an	ınterva	i IS	continuous	on	that interval.	

(12) Define derivable function at a point.

`Q.3 (a) Prove that $\sqrt{2}$ is an irrational number.

[5]

(b) In usual notation, Prove that $E(x) = e^x$, $\forall x \in R$.

[5]

OR

Q.3 (a) State and Prove the Archimedean property of R.

[5]

(b) For all real numbers x and y ,prove that : (1) $|x + y| \le |x| + |y|$ [5]

(2)
$$|x y| = |x| |y|$$
.

Q.4 (a) Prove that C(x + y) = C(x) C(y) - S(x) S(y).

[5]

(b) Prove that a set is closed iff its complement is open.

[5]

OR

Q.4 (a) State and Prove Bolzano-Weierstrass theorem for a set.

[5]

(b) If S and T are sets of real numbers then Prove that the following

(i)
$$S \subset T \Longrightarrow S' \subset T'$$
 $(ii)(S \cup T)' = S' \cup T'$.

[5]

Q.5 (a) Show that a continuous function on a closed interval [a,b]

[5]

attains its bounds at least once in [a,b].

(b) Prove that limit of a function is unique if exists.

[5]

OR

Prove that a function $f: [a, b] \rightarrow R$ is continuous at a point c of Q.5 (a)

[5]

[a,b] iff $\lim_{n\to\infty} c_n = c \Rightarrow \lim_{n\to\infty} f(c_n) = f(c)$.

(b) Let f and g be two functions defined on some neighborhood

[5]

of point a such that $\lim_{x\to a} f(x) = l$ and $\lim_{x\to a} g(x) = m$, then prove that $\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \frac{l}{m}$, $m\neq 0$.

- Q.6 (a) State and prove Darboux's theorem for derivable function. [5]
 - (b) Prove that $\frac{x}{1+x} < \log(1+x) < x$, for all $x \ge 0$. [5]

OR

Q.6 (a) Define Uniformly Continuous function.

[5]

Prove that the function $f(x) = x^2$ is uniformly continuous on [-1,1].

(b) Prove that a function which is derivable at a point is necessarily [5] continuous at that point .ls the converse true? Justify your answer.

