SARDAR PATEL UNIVERSITY [111] V. V. Nagar B.Sc. Sem- V Examination US05CMTH24 (Metric Spaces and Topological Spaces) 29th December 2020, Twesday. 02:00 pm to 04:00 pm Maximum Marks: 70 [10]Q.1 Choose the correct option in the following questions, mention the correct option in the answerbook. (1) The set of all cluster points of $A = \{1, \frac{1}{3}, \frac{1}{9}, \dots, \frac{1}{3^n}, \dots\}$ in \mathbb{R}^1 is... (d) {0} (c) $A \cup \{0\}$ (2) Let (X, \mathcal{T}) be a topological space and $Y \subset X$. Then Y is dense in X if (c) $\overline{Y} = X$ (d) $\overline{Y} = \emptyset$ (b) $Y' = \emptyset$ (a) Y' = X(3) Let ρ and σ be two metrics on M then which of the following is not a metric on M. (d) $3 \sigma + 2\rho$ (c) $\sigma + \rho$ (a) 5σ (b) $\sigma - \rho$ (4) Let $d: M \times M \to \mathbb{R}$ be a metric on M. Then which of the following is also a metric on M? (b) $d_1(x, y) = \max\{1, d(x, y)\}$ (a) $d_1(x,y) = \min\{1, d(x,y)\}$ (d) $d_1(x,y) = \max\{0, d(x,y)\}$ (c) $d_1(x, y) = \min\{0, d(x, y)\}$ (5) Which of the following is not an open subset of \mathbb{R}^1 . (d) $(-1, 2) \cup (0, 5)$ (c) ϕ (a) $(1, 3) \cup (5, 7)$ (b) Q (6) In a topological space (X, \mathcal{T}) , every \mathcal{T} -open set (b) is T-closed also (a) can not be a neighbourhood of all its points (d) none (c) is a neighbourhood of all its points (7) If $E = [1, \overline{3}) \cup \{4\} \subset \mathbb{R}^1$, then \overline{E} ...? (d) [1, 4) (c) $[1, 3] \cup \{4\}$ (b) [1, 4] (a) $\{1, 3\} \cup \{4\}$ (8) Consider M = [0, 1] with discrete metric. Find $B[1/4, 1/2] = \dots$ (c) $\{1/4\}$ (a) (0, 1) (b) [0, 1] (9) Which of the following is not a closed subset of \mathbb{R} . (d) None of these (c) $\{1,3,5,7,9\}$ (b) ℝ (a) $[3, 5] \cup [1, 7)$ (10) Let $X = \{a, b\}$. Then for which of the following \mathcal{T} , (X, \mathcal{T}) is not connected? (b) $\{X,\emptyset,\{a\},\{b\},\{a,b\}\}$ (a) $\{X, \emptyset, \{a\}\}$ (d) None of these (c) $\{X,\emptyset,\{b\}\}$ [08]Q.2 Do as directed: (1) True or False: The closure of any subset of a metric space is always closed. (2) True or False: Every function on Discrete matric space may not be continuous. (3) True or False: Arbitrary intersection of open set is open set. (4) True or False: In any metric space (M, ρ) , M is always closed set. (5) True or False: Every convergence sequence in a Metric space is a Cauchy sequence. (6) Consider \mathbb{R} with discrete metric. Then B[4; 0.99]=... (7) Consider $\mathbb R$ with discrete metric. Then B[-5; 5]=... (8) If E = B[2; 5], then \overline{E} in \mathbb{R}^1 is... 20 Q.3 Attempt any Ten. (1) Define Topological space and give its one example. (2) Is (0,2] a *U*-neighbourhood of 1? Justify! (3) Are closed interval of \mathbb{R} , u- closed? where u is usual Topology for \mathbb{R} . (4) Prove that $\{a\}$ is closed set in usual Topology. (P.T.O.)

SEAT No._

No. of Printed Pages: 2

- (5) Prove that every subset of \mathbb{R}_d is open.
- (6) Define continuity of a function.
- (7) Show that if ρ is a metric for a set M, then so is 4ρ .
- (8) If $\{x_n\}$ is a convergent sequence in \mathbb{R}_d , then show that there exist a positive integer N such that $x_N =$ $x_{N+1} = x_{N+2} = \dots$
- (9) Define: (i) Convergence of sequence in metric space (ii) Cauchy sequence.
- (10) Let A be an open subset of the metric space M. If $B \subset A$ is open in A, then prove that B is open in M.
- (11) Is arbitrary union of closed sets is closed? Justify!.
- (12) Let f be a continuous real valued function on [a, b], then prove that f is bounded.
- Q.4 Attemt any Four.

[32]

- (a) Let (X, \mathcal{T}) be a topological space and let A be a subset of X. Prove that A is \mathcal{T} -open set iff A contains a \mathcal{T} -neighbourhood of each of its points.
- (b) If $\{G_{\alpha} : \alpha \in \Lambda\}$ is a collection of \mathcal{U} -open subsets of \mathbb{R} then prove that $\cup \{G_{\alpha} : \alpha \in \Lambda\}$ is a \mathcal{U} -open set.
- (c) Let (X, \mathcal{T}_1) and (Y, \mathcal{T}_2) are topological spaces and f be a mapping of X into Y. Then f is continuous iff inverse image under f of every \mathcal{T}_2 closed set is \mathcal{T}_1 closed set.
- (d) Show that every open subset G of \mathbb{R} can be written $G = \bigcup I_n$, where I_1, I_2, I_3, \ldots are a finite or a countable number of open intervals which are mutually disjoint.
- (e) Let (X, \mathcal{T}) be a topological space and let A be a subset of X and A' be the set of all cluster points of A. Prove that A is \mathcal{T} -closed iff $A' \subset A$.
- (f) Let (M, d) be a metric space and $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$. Is d_1 a metric on M? Justify!
- (g) Prove that if (X, \mathcal{T}) is disconnected iff there is a non empty proper subset of X that is both $\mathcal{T}-$ open and \mathcal{T} – closed.
- (h) Define interior of a set. Let (X, \mathcal{T}) be a topological space and A be a subset of X. Then prove That Int(A)is the largest open subset of A.

