	No. of Printed Pages : 3	
	SEAT No.	
	SARDAR PATEL UNIVERSITY B.Sc. (SEMESTER-V) EXAMINATION-2020 December 28, 2020, Monday 2:00 p.m. to 4:00 p.m.	
	US05CMTH23 (Group Theory) Maximum Marks: 70	
Q.1	Write the correct option of the following multiple choice questions.	[10]
•	Multiplicative inverse of $\sqrt{7}$ in \mathbb{R}^* is	
(2)	In Klein 4-group $G=\{e,a,b,c\}$, $abc=$ (a) c (b) e (c) b (d) a	
(3)	A nonempty subset H of finite group $(G, +)$ is a subgroup of G iff	
(4)	$\phi(11) = \dots$ (a) 10 (b) 11 (c) 1 (d) 0	
(5)	If H and K are finite subgroup of group G such that $((o(H)), O(K)) = 1$, then $H \cap K =$	
(6)	(a) $\{e\}$ (b) e (c) ϕ (d) 1 Let $H = 4Z$ $G = Z$ then $H - 1 = \dots$ (a) $H + 1$ (b) $H + 4$ (c) $H - 3$ (d) $H + 3$	
(7)	Homomorphic image of abelian group is	
(8)	A homomorphism f is iff $Kerf = \{e\}$. (a) one-one (b) onto (c) isomorphism (d) automorphism	
(9)	Order of S_5 is	
(10)	The group A_n is simple for	
Q.2	Do as directed.	[08
• •	Multiplicative inverse of 2 in \mathbb{Z}_7^* is	
(2)	True or False? If $a * e = a = e * a$ for $a, e \in G$ then $(G, *)$ is called semi group.	
(3)	In any group G , $o(e) = \dots$	
(4)	True or False?	
(5)	Every group of order 4 is abelian group. True or False?	
` '	Every subgroup of cyclic group is normal subgroup. Define $f: R^* \to R^*$ by $f(x) = 1/x$ then Ker $f = \dots$	
(0)	Define j . We say $j(x) = 1/x$ even then $j = \dots$	

(P.T.O.)

[1]

(7) True or False?

 S_n/A_n is cyclic group.

(8) Number of conjugate classes of S_3 is

Q.3 Answer the following in short. (Attempt any 10)

[20]

- (1) Prove that every group has unique identity element.
- (2) Prove that group G, prove that every element of G has unique inverse.
- (3) For group G prove that $(ab)^{-1} = b^{-1}a^{-1}$
- (4) Find all right cosets of $-3\mathbb{Z}$ in \mathbb{Z} .
- (5) Prove that any infinite cyclic group is isomorphic to \mathbb{Z} .
- (6) Let H be any subgroup of group G. Then prove that $aH = H \Leftrightarrow a \in H$.
- (7) Define: Group homomorphism.
- (8) Prove that homeomorphic image of cyclic group is also cyclic.
- (9) Define: Direct sum of subgroups.
- (10) Explain Signature of permutation with example.
- (11) Prove that S_n is a finite non commutative group of order n!.
- (12) Find all Sylow 2 subgroups of S_3 .
- Q.4 Answer the following questions. (Attempt any 4)

[32]

- (1) Let H and K be subgroups of group G. Then prove that HK is subgroup of G iff HK = KH.
- (2) Let G be a cyclic group and H be a subgroup of G. Then prove that H is cyclic.
- (3) Prove that every infinite cyclic group has only one non-trivial automorphism.
- (4) Let G = (a) be a finite cyclic group of order n. Then prove that the mapping $\theta : G \to G$ defined by $\theta(a) = a^m$ is an automorphism of G iff m is relatively prime to n.
- (5) State and prove First isomorphism theorem.
- (6) Prove that G is direct product of subgroups H and K iff (i) every $x \in G$ can be uniquely expressed as x = hk, $h \in H$, $k \in K$ (ii) hk = kh, $h \in H$, $k \in K$
- (7) State and prove Cayley's theorem.
- (8) State and prove Sylow Theorem I.

X ----

[2]