| SEAT No.                                         |                                              | No. of Printed Pages : |               |
|--------------------------------------------------|----------------------------------------------|------------------------|---------------|
| [70]                                             | Sardar Patel University , Vallabh Vidyanagar |                        |               |
| B.Sc Sem: V Subject : Mathematics                |                                              |                        |               |
| Date: 24/12/2020                                 | US05CMTH21 [Real Analysis]                   | Time:2.00 to 4.00      | Max.Marks: 70 |
| Q.1 Choose the correct option                    | for each of the following.                   | •                      | [10]          |
| (1)Which of the following                        | g is an ordered field ?                      |                        |               |
| (a) Q (b) R                                      | (c) N (d) none of these                      |                        |               |
| (2) The Smallest number                          | of a set ,if exists is                       |                        |               |
| (a) the supremum of t                            | the set (b) the infimum of the set (c)       | not unique (d) none    |               |
| (3) The supremum of $\left\{\frac{1}{m}\right\}$ | $\left\{ +\frac{1}{n}/m,n\in N\right\}$ is   |                        |               |
| (a) 0 (b) 1                                      | (c) 2 (d) none                               |                        | * .           |
| (4) Every open interval in                       | n R isset                                    | And the second         |               |
| (a) an open (b) a clos                           | ed (c) open and closed (d) none              |                        | •,            |
| (5) The derived set of A                         | ={1,2,3,4} is                                |                        | \$ * ·        |
| (a) A (b) R (                                    | c) Ø (d) Z                                   |                        | 1 38          |
| (6) The closure of Qi.e                          | $	ilde{Q}$ is                                |                        | . *           |
| (a) N (b) Q                                      | (c) Ø (d) R                                  |                        |               |
| (7) The Range of seque                           | nce is always                                |                        |               |
| (a) empty (b) infinit                            | te (c) non- empty (d) none                   |                        |               |
| (8) Every convergent se                          | equence is                                   |                        |               |
| (a) oscillating (b) b                            | ounded (c) unbounded (d) none                | . :                    |               |
| (9) A positive term serie                        | es $\sum \frac{1}{n^p}$ is convergent iff    |                        | No.           |
| (a) $p = 1$ (b) 0                                | (c) $p > 1$ (d) $p < 0$                      |                        |               |
| 110) A sorios Valuis co                          | nvergent then lim u                          |                        |               |

(a)  $\neq 0$  (b) = 0 (c) = 1 (d) does not exists

Q.2 Do as directed.

[8]

- (1) The infimum of  $\left\{\frac{(-1)^n}{n}/n \in N\right\}$  is ....
- (2) If S =(0,5) U {5,6,7} then the greatest element of S is .....
- (3) If  $S_n = \left(\frac{-1}{n}, \frac{1}{n}\right)$ ,  $\forall n \in \mathbb{N}$  then  $\bigcap_{n=1}^{\infty} S_n = \dots$
- (4) ...... is a limit point of a set  $S = \left\{ \frac{1}{n} / n \in \mathbb{N} \right\}$
- (5) The range of sequence  $\{(-1)^n/n \in N\}$  is .....
- (6) True Or False: A sequence without limit point is bouded.
- (7) True Or False :If a positive term series  $\sum_{n=1}^{\infty} u_n$  is convergent then its partial sums is bounded above.
- (8) True Or False :The series  $\sum_{n=1}^{\infty} \frac{n}{n+1}$  is convergent.
- Q.3 Attempt anyTEN:

[20]

- (1) Define : An Ordered Field.
- (2) Prove that the greatest lower bound of a set S is unique, if it exist.
- (3) Find the g.l.b and l.u.b of  $\left\{1+\frac{(-1)^n}{n}/n\in N\right\}$  if they exist.
- (4) Prove that every open set is a union of open intervals.
- (5) Define: An open set.
- (6)Define: A limit point of a set .
- (7)Define: A convergent sequence.
- (8) Prove that every convergent sequence is bounded.
- (9) Prove that  $\lim_{n\to\infty} \frac{3+\sqrt{2}n}{n} = \sqrt{2}$
- (10) Define: Infinite series
- (11) Prove that the series  $\sum_{n!}^{\infty}$  is convergent. n=1
- (12) Investigate the behaviour of the series whose  $n^{th}$  term is  $n^{\frac{1}{n}}$ .

## Q.4 Attempt any FOUR:

- (1) State and Prove the Archimedean property of R.
- (2) Prove that the set of all rationals Q is not an order complete field.
- (3) Prove that a set is closed iff its complement is open .
- (4) Prove that the union of arbitrary family of open sets is open.
- (5) State and Prove Bozano-Weierstrass theorem for sequence.
- (6) State and Prove Cauchy's first theorem on limits.
- (7) State and Prove comparision test of first type.
- (8) Prove that the positive term geometric series  $1+r+r^2+\cdots$  converges for r<1 and diverges to  $\infty$  for  $r\geq 1$  .