Q.2 Do as directed:

[80]

(1) True or False: The identity of group is unique.

(b) 6

(2) True or False: The intersection of two subgroups of a group G may not be a subgroup of G.

(3) True or False: The product of permutation of 4 symbols commutative.

(4) True or False: Let H be any subgroup of group G. Then $aH = H \Leftrightarrow a \in H$.

(c) 2

(5) Multiplicative inverse of \S in \mathbb{Z}_7^* is

(6) — is generator of group Z_n .

(7) Order of S_4 is

(8) Signature of every transposition is

- [20]
- (1) Prove that every subgroup of Z is of the form nZ, for some $n \in Z$.
- (2) Prove that $(M_2(R), +)$ is a group.
- (3) Prove that intersection of two subgroups of a group G is also a subgroup of G.
- (4) Find O(2) in Z.
- (5) State and prove left cancelation law in group G.
- (6) Let H be any subgroup of group G. Then prove that $aH = H \Leftrightarrow a \in H$.
- (7) Prove that $\theta: Z \to Z$ defined by $\theta(n) = -n$ is an automorphism of Z.
- (8) Express the inverse of cycle (12453) as a product of transpositions.
- (9) Define Group and finite group.
- (10) Is the product of permutation of 4 symbols commutative? Justify.
- (11) Prove that S_n is a finite group of order n!.
- (12) Prove that Z(G), the centre of group G is a subgroup of G.

Q.4 Attempt the Long questions. [Any Four]

[32]

- (a) Let H and K be subgroups of group G. Then prove that HK is subgroup of G iff HK = KH.
- (b) Let H and K be finite subgroups of group G such that HK is a subgroup of G. Then prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.
- (c) Let G be a finite cyclic group of order n , then prove that G has $\phi(n)$ generators.
- (d) If G is cyclic group of order n and $a^m = e$ for some $m \in \mathbb{Z}$ then prove that n/m.
- (e) Let G = (a) be a finite cyclic group of order n. Then prove that the mapping $\theta: G \to G$ defined by $\theta(a) = a^m$ is an automorphism of G iff m is relatively prime to n.
- (f) State and Prove First isomorphism theorem.
- (g) Prove that S_n is non commutative group of order n!.
- (h) State and prove Cayley's theorem.

