[105] Sardar Patel University, Vallabh Vidyanagar

B.Sc. - Semester-V: Examinations: 2020-21 [NC]

Subject: Mathematics

US05CMTH03

Max. Marks #70

Metric Spaces

Date: 28/12/2020, Monday

Timing: 02.00 pm - 04.00 pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.

[10]

[1] A cluster point of the set $\{\frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots, \}$ is [A] 0 [B] 1

[C] 2

[D] 3

[2] In \mathbb{R}_d , the discrete metric space, d(0,2) =

[C] 2

[D] -2

[3] The set of all cluster points of (1, 2) is

[A] [1, 2]

[B] [1,2)

[C] (1, 2]

[D] (1,2)

[4] The metric space whose all the subsets are open as well as closed is

 $[A] R^1$

[B] R_d

[D] none

[5] In the metric space M = [0, 1] with usual metric , $B[\frac{1}{4}, 1] = [A][0, 1]$ [B] $[\frac{1}{4}, 1]$ [C] $[0, \frac{1}{4}]$

 $[C][0,\frac{1}{4}]$

[D](0,1)

[6] In which of the following every closed subset is open also?

 $[A] R^1$

[B] R_d

 $[C] R^2$

[D] C

[7] If a subset A of a metric space M is totally bounded then it is

[A] complete

[B] unbounded

[C] bounded

[D] connected

[8] For a subset $A = \{-2, 0, 2\}$ of R^1 , $diam(A) = \frac{1}{12}$

[C] 2

[D] 4

[9] The range of a real valued function that is continuous on [1, 2] is

[A] not compact

[B] not bounded

[C] not complete

[D] none

[10] If f is a uniformly continuous function then it is

[A] continuous

[B] bounded

[C] differentiable

[D] none

Q: 2. In the following, depending on the type of question, either fill in the blank or answer whether a statement is true false.

[08]

- [1] The set of cluster points of Q is Q. (True or False?)
- [2] If ρ is a metric on M then -2ρ is also a metric on M. (True or False?)
- [3] In R_d we have B[2,2]=B[3,3] . (True or False?)
- [4] Every function defind on R_d is discontinuous. (True or False?)
- [5] In \mathbb{R}^1 the subset [0,1] is a totally bounded set. (True or False?)
- [6] Every subset of R_d is bounded. (True or False?)
- [7] If $f:[0,1]\to R^1$ is continuous on [0,1] then f([0,1]) is compact. (True or False?)
- [8] If M is compact and $f: M \to R^1$ is continuous on M then f(M) is totally bounded. (True or False?)
- Q: 3. Answer ANY TEN of the following.

[20]

- [1] Define $d: \mathbb{R} \longrightarrow \mathbb{R}$ by $d(x,y) = |x^2 y^2|$. Check whether d is a metric or not.
- [2] Let $d: [0, \frac{\pi}{2}] \times [0, \frac{\pi}{2}] \longrightarrow \mathbb{R}$ be defined by $d(x, y) = \sin |x y|$. Show that d is a metric on $[0, \frac{\pi}{2}]$.
- [3] Show that $\rho: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$, defined by $\rho(x,y) = |x-y|$, is a metric on \mathbb{R}
- [4] Prove that in any metric space (M, ρ) , the set M and ϕ are closed sets.
- [5] Give an example of a set E such that E and its compliment are dense in \mathbb{R} .
- [6] Is the intersection of an infinite number of open sets open? Justify!
- [7] Let $T: [0, \frac{1}{3}] \to [0, \frac{1}{3}]$ be defined by $T(x) = x^2$, $\forall x \in [0, \frac{1}{3}]$. Prove that T is a contraction on $[0, \frac{1}{3}]$.
- [8] Show that every contraction mapping is continuous
- [9] Prove or disprove that the empty set ϕ and singletone set are assumed to be connected.
- [10] Define: Finite intersection property

- [11] Show that a finite subset of \mathbb{R}_d is compact.
- [12] Show that the range of a continuous function, on a compact metric space, is bounded.
- Q: 4. Attempt ANY FOUR of the following questions.

[32]

- [1] Let (M, ρ) be a metric space and let a be a point in M. Let f and g be real valued functions whose domains are subsets of M. If $\lim_{x \to a} f(x) = L$ and $\lim_{x \to a} g(x) = N$ then prove that $\lim_{x \to a} [f(x) + g(x)] = L + N$
- [2] Let (M,d) be a metric space and let $d_1(x,y) = \frac{d(x,y)}{1+d(x,y)}$. Then prove that d_1 is a metric on M
- [3] Prove that if (M, ρ) is a metric space then any open sphere in M is an open set.
- [4] Prove that a subset G of the metric space M is open iff compliment of G is closed.
- [5] If the subset A of the metric space (M, ρ) is totally bounded, then prove that A is bounded.
- [6] Let (M, ρ) be a metric space. Then prove that a subset A of M is totally bounded iff every sequence of points of A contains a Cauchy subsequence.
- [7] If M is a compact metric space, then prove that M has the Heine-Borel property.
- [8] Let $(M_1\rho_1)$ be a compact metric space. If f is continuous function from M_1 into a metric space (M_2, ρ_2) , then prove that f is uniformly continuous on M_1 .

