[43] Sardar Patel University, Vallabh Vidyanagar

B.Sc. - Semester-V: Examinations: 2020-21 [NC]

Subject: Mathematics

US05CMTH02

Max. Marks: 70

Real Analysis-II

Date: 26/12/2020, Saturday

Timing: 02.00 pm - 04.00pm

Instruction: The symbols used in the paper have their usual meaning, unless specified.

Q: 1. Answer the following by choosing correct answers from given choices.

[10]

[1] Every convergent sequence is

[A] oscillating

[B] bounded

[C] unbounded

[D] none

[2] The sequence $\{2^n\}$

[A] is convergent

[B] diverges to ∞

[C] diverges to $-\infty$

[D] oscillates finitely

[3] If a sequence $\{S_n\}$ is such that $\lim_{n \to \infty} \frac{s_{n+1}}{s_n} = l$ then $\lim_{n \to \infty} S_n = \infty$ if $[A] \ l < 1$ $[B] \ l \leqslant 1$ $[C] \ l > 1$

 $[D] l \geqslant 1$

[4] If $\lim_{n\to\infty} u_n = 1$, for a positive term series $\sum_{n=1}^{\infty} u_n$ then the series [A] converges to 0 [B] converges to 1 [C] converges to 2

[D] cannot converge

[5] The series $\sum_{n=1}^{\infty} \frac{1}{n}$ is

[A] bounded

[B] convergent

[C] divergent

[D] none

[6] If $\sum_{i=1}^{\infty} u_i$ is a positive term series and $\sum_{i=1}^{n} u_i < 100$, $\forall n$ then the series [A] is convergent [B] diverges to $+\infty$ [C] diverges to $-\infty$

[C] diverges to $-\infty$

[D] none

 $[7] \lim_{(x,y)\to(6,\pi)} x^2 \tan \frac{y}{x} =$

[A] 36

[B] $36\sqrt{3}$

[C] $12\sqrt{3}$

[D] $3\sqrt{12}$

[8] If $f(x,y) = x^3y^3 - 3x^2y^2$ then $f_y(0,1) =$

[A] 0

[C] 2

[D] 3

[9] For a sufficiently many times differentiable function f(x,y) its Taylor's expansion about (-1,2) is a series in powers of

[A] x+1 and y-2

[B] x - 1 and y + 2[D] x + 1 and y + 2

[C] x-1 and y-2

[10] For a function f, if $f_x(a,b) < f_y(a,b)$ then at (a,b), f has [A] no extreme value [B] a minimum [C] a maximum

[D] a stationery point

Q: 2. In the following, depending on the type of question either fill in the blank or answer whether a statement is true false

[80]

- [1] Sequence $\{-(0.2)^n\}$ is convergent. (True or False?)
- [2] A sequence may have more than one limits. (True or False?)
- [3] For a sequence $\sum_{n=1}^{\infty} S_n$, if $\lim_{n\to\infty} S_n = 7$ then the series is not convergent. (True or False?)
- [4] The serues $2+4+8+\cdots+2^n+\ldots$ is convergent. (True or False?)
- [5] Fill in the blank. : $\lim_{(x,y)\to(-1,-2)} (3x^2 + 5y^2) = \dots$
- [6] $\lim_{x \to 1} \lim_{y \to -1} \frac{x^2 y^2}{x^2 + y^2} \neq \lim_{y \to -1} \lim_{x \to 1} \frac{x^2 y^2}{x^2 + y^2}$ (True or False?)
- [7] If f''(1) = 0 then f has an extreme value at 1. (True or False?)
- [8] $f(x) = 100x 99, x \in R$ has no extreme value. (True or False?)
- Q: 3. Answer ANY TEN of the following.

[20]

- [1] Define: Limit Superior and Limit Inferior
- [2] Prove that every convergent sequence is bounded.
- [3] Show that $\lim_{n\to\infty} \frac{3+2\sqrt{n}}{\sqrt{n}} = 2$
- [4] Test $\sum_{n=1}^{\infty} \frac{n^2 1}{3n^2}$ for convergence
- [5] Test $\sum_{n=1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{\frac{3}{2}}}$ for convergence
- [6] Why the series $\sum_{n=0}^{\infty} \frac{5n^3 + 4n}{n^3}$ cannot converge?
- [7] Define: Limit of a function
- [8] Evaluate: $\lim_{(x,y)\to(1,1)} \frac{e^{(x-y)}-1}{x-y}$
- [9] Evaluate : $\lim_{(x,y)\to(2,3)} \frac{\sin(3xy-18)}{\tan^{-1}(xy-6)}$
- [10] Can a function $f(x,y) = x^3 xy y$ have an extreme value at (-1,-1)? Why?
- [11] Does the function $f(x,y) = x^100 + y^100$ defined on R^2 , have minimum at (0,0)? Why?
- [12] State Maclaurin's theorem

Q: 4. Attempt ANY FOUR of the following questions.

 $\begin{bmatrix} 32 \end{bmatrix}$

1/2

[1] State and prove the Bolzano-Weierstarss theorem for sequence

[2] Show that the sequence $\{r^n\}$ converges iff $-1 < r \leqslant 1$.

[3] Prove that the series $\sum \frac{1}{n}$ does not converge.

[4] State and prove the comparision test of first type.

[5] If f and g are two functions defined on same neighbourhood of a point (a,b) such that $\lim_{(x,y)\to(a,b)}f(x,y)=l$, and $\lim_{(x,y)\to(a,b)}g(x,y)=m$ then prove that

$$\lim_{(x,y)\to(a,b)} (f.g) = \lim_{(x,y)\to(a,b)} f. \lim_{(x,y)\to(a,b)} g = l.m$$

[6] If
$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2}, & \text{if } x^2 + y^2 \neq 0\\ 0, & \text{if } x = y = 0 \end{cases}$$
 then find $\lim_{(x,y)\to(0,0)} f(x,y)$

[7] State and prove Taylor's theorem

[8] Investigate the maxima and minima of the function $f(x,y) = x^3 + y^3 - 63(x+y) + 12xy$

• .