	SEAT No	o, of Printed I	'ages:ユ
	SARDAR PATEL UNIVERSITY B.Sc. SEM- V EXAMINATION (NC) 24 th December 2020 ,Thursday 2.00 p.m to 4.00 p.m Sub.: Mathematics (US05CMTH01)		
(Real Analysis-I)			
	Max	ximum Ma	arks: 70
	Choose the correct option in the following questions, me the correct option in the answerbook.	ntion	[10]
(1)	The derived set of a set is		
	(a) open and closed set (b) not open set (c) clo but not closed	sed set	(d) open
	The supremum of the set $\{1+(-1)^n:n\in N\}$ is (a) 0 (b) 1 (c) 2 (d) not ex	cists	
	The set $\{1, -1, \frac{1}{2}, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{3},\}$ is (a) open and closed set (b) open set (c) closed	d set (d) neither
(4)	open nor closed The field which does not have the least upper bound property is (a) \mathbb{N} (b) \mathbb{Z} (c) \mathbb{Q} (d) \mathbb{R}		
	(5) Every uniformly continuous function is		
	(a) continuous (b) not continuous (c) unbounded (d) none		
	A function f is said to have a discontinuity of the first kind	• •	
	if		
	(a) $\lim_{x \to c^-} f(x) \neq f(c)$ (b) $\lim_{x \to c^-} f(x)$ and $\lim_{x \to c^+} f(x)$ exi	ists but not	equal
	(a) $\lim_{x \to c^-} f(x) \neq f(c)$ (b) $\lim_{x \to c^-} f(x)$ and $\lim_{x \to c^+} f(x)$ exists (c) $\lim_{x \to c^+} f(x) \neq f(c)$ (d) None		
	The Set $\bigcup (\frac{1}{n}, 1 - \frac{1}{n})$ is		
(')	(a) $(0,1)$ (b) $\{0,1\}$ (c) $[0,1]$ (d) $[0,1]$	0, 1)	
(8)'	The continuous function on closed interval is		
	(a) not bounded (b) open set (c) bounded ((d) none.	
	If $f'(c) < 0$, then function f is at c .	(1)	C 11
	(a) not derivable (b) increasing (c) descreasing In $(0, \pi/2)$, the function $C(x)$ is	(a) none	or these
	(a) strictly decreasing (b) strictly increasing (c) sta	ationary	(d) none
\cap 0	Do og directed.		lool
	Do as directed: True or False: A finite set may have limit point.		[80]
1 1	True or False: Every differentiable function is continus.		
: :	True or False: Every infinite subset of real numbers has Gratest and Smallest		

member.

- (4) True or False: The derived set of a set is closed.
- (5) True or False: A set which is not closed is always open set.
- (6) The infimum of a set $\{-1 + \frac{(-1)^n}{n} : n \in N\}$ is (7) The infimum of a set $S = (2,6) \cup \{1,2,3,4,5,6,7,8\} = \dots$
- (8) The set $\{1 + \frac{(-1)^n}{n} : n \in N\}$ has ... number of limit points.

Q.3 Attempt any ten in short:

[20]

- (1) Is every continuous function derivable? Justify your answer.
- (2) Find the supremum and the infimum of a set $\{2 + \frac{(-1)^n}{n} : n \in N\}$.
- (3) Prove that supremum of a set S of numbers, if it exists, is unique.
- (4) Let m = inf(S), where S is a bounded set. Show that $m \in \text{closure of } S$.
- (5) Prove that L(ab) = L(a) + L(b).
- (6) Prove that the superset of a neighbourhood(nbd) of a point x is also a nbd of x.
- (7) If f is derivable at point c then, show that function 1/f derivable at point c, where $f(c) \neq 0$.
- (8) In usual notations, prove that $\lim_{x\to a} (f-g)(x) = l-m$.
- (9) Prove that limit of a function is unique, if exists.
- (10) Is $(S \cap T)' = S' \cap T'$? Justify your answer.
- (11) Prove that $a^n = a.a.a....a$ (n times).
- (12) Show that the supremum of a bounded non-empty set S, when not a member of S, is a limit point of S.

Q.4 Attempt any Four:

|32|

- (a) Prove that the set of rational numbers is not order complete.
- (b) In usual notations, prove that $E(x) = e^x$ for all $x \in R$.
- (c) State and Prove Bolzano-Weierstrass theorem for a set.
- (d) Prove that there exists a positive number π such that $C(\pi/2) = 0$ and C(x) > 00 for $0 \le x < \pi/2$.
- (e) In usual notations, prove that $\lim_{x\to a} \left(\frac{f}{g}\right)(x) = \frac{l}{m}$, provided $m\neq 0$.
- (f) Show that a function $f:[a,b]\to \mathbf{R}$ is continuous at point c of [a,b] iff $\lim_{n\to\infty} c_n = c \Rightarrow \lim_{n\to\infty} f(c_n) = f(c).$
- (g) Show that log(1+x) lies between $\frac{x}{1+x}$ and x for all x>0.
- (h) State and prove Darboux's theorem for derivable function.

