.B :(i)	All th	Time: From 10:30 am to 1:30 pm Subject: PHYSICS [US05CPHY03] Solid state physics e symbols have their usual meanings. Tota] Total Marks 70	
21		To answer the following Multiple Choice Questions choose the correct option.	[10]	
	(i)	In the Powder Method the type of specimen placed in a beam o monochromatic X- ray is (a) Polycrystalline (b) Single (c) crystalline (d) None of these	f	
	(ii)	Bragg derived the condition $n\lambda = 2dsin\theta$ for interference of the X-rays scatter by a set of parallel lattice planes. (a) destructive (b) constructive	e	
	(iii)	 (c) Either (a) or (b) (d) Both (a) and (b) In the Laue method à =and ∂ = (a) Variable - Fixed (b) Fixed - Variable (c) Fixed- Fixed (d) Variable - Variable 		
	(iv)	Isotope effect is used to study vibrations. (a) lattice (b) electron-lattice (c) both (a) and (b) (d) photon		
	(v)	(c) Sonn (d) and (b) (d) photon Meissner effect is found in superconductor. (a) Type I (b) Type II (c) Type I & II (d) None of these		
	(vi)	The value of critical magnetic field is always for Type I superconductor. (a) to high (b) moderate (c) to low (d) None of these		
	(vii)	Pure semiconductor is insulator at temperature, (a) ~ 450K (b) -140K (c) Room (d) absolute zero		
	(viii)	For intrinsic Semiconductor for the case $m_e^* = m_h^*$ then the Fermi level lies exactly at the (a) Near the valance band (b) Near the conduction band (c) Middle of the forbidden aap (d) Valance band edge		
	(ix)	Full name of CMOS is (a) Complementary metal oxide semiconductor (b) Complementary metal oxide superconductor (c) Complementary mode oxide semiconductor		
	(x)	 (d) Common mode oxide semiconductor Any material engineered at nanoscale to perform a specific task is called (a) Nanoscale bio-structure (b) Sensor (c) Smart material (d) Lithography 	<	the second se

Page 1 of 2

Que2		Answer <i>briefly</i> any ten of the following questions.	[20]
	(1)	What is X-ray Crystallography? Give the names of three experimental X-ray diffraction methods.	
	(2)	What are BCC, FCC, and HCP structures?	
	(3)	List out the properties of X-ray.	
	(4) (5)	What is fermi energy?	
	(5)	What is contradiction of Meissner effect?	
	(0)	What is intrinsic semiconductor?	
	(8)	What is Photovoltaic effect?	
	(9)	Which phenomenon is called fluorescence?	
	(10)	Explain the working principle of electron microscope.	
	(11)	What are nano materials?	
	(12)	Explain the working principle of scanning probe instruments.	
Que3	(a)	Discuss in detail: Powder Method.	[06]
	(b)	Explain X-ray back reflection Laue method. OR	[04]
Que3	(a)	Explain the geometrical construction of reciprocal space.	[06]
	(b)	Give the properties of reciprocal lattice.	[04]
Que4	(a)	Explain Drude model of free electron.	[06]
	(b)	Explain the effect of isotopes on superconductor. OR	[04]
Que4	(a)	What is superconductivity? Discuss Type I and Type II	[06]
·		superconductors.	
	(b)	Define Drift velocity and derive the equation for electrical conductivity.	[04]
Que5		Draw energy level diagram for a metal and N-type	[10]
		semiconductor (with Φ_{m} > Φ s) before and after junction	() I
		formation and explain rectifying contacts. OR	
Que5		Draw the diagram of the location of Fermi level at $0^0 K$ in an	[10]
		intrinsic semiconductor and explain Fermi level and carrier	
		concentration in semiconductors.	
Que6	(a)	Explain at length the production of biostructures at nanoscale.	[06]
	(b)	Write a note on dip pen nanolithography OR	[04]
Que6	(a)	Explain at length the process of self assembly used in nanofabrication.	[06]
	(b)	Write a note on molecular synthesis.	[04]

ŝ,