SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination
 Friday, 22 November 2013
 $10.30 \mathrm{am}-1.30 \mathrm{pm}$
 US05CMTH05 - Mathematics
 Number Theory

Total Marks: 70
Note: Figures to the right indicates full marks.
Q. 1 Answer the following by selecting the correct choice from the given [10] options.
(1) $(4676,366)=$ \qquad .
(a) 6
(b) 2
(c) 1
(d) 4
(2) $[12,30]=$ \qquad .
(a) 60
(b) 30
(c) 6
(d) 360
(3) If ' a ' is square number, then $\mathrm{S}(\mathrm{a})$ is \qquad .
(a) Even
(b) 0
(c) Odd
(d) Prime
(4) Fermat Number $\mathrm{F}_{3}=$ \qquad .
(a) 3
(b) 13
(c) 65537
(d) 257
(5) $T(810)=$ \qquad .
(c) 38
(d) 28
(6) $a x+b y=c$ has integer solution if and only if \qquad .
(a) $(a, b)=a$
(b) $(a, b)=b$
(c) $(a, b) / c$
(d) $c /(a, b)$
(7) $(x, y, z)=$ \qquad is one of the relative prime solution of $x^{2}+y^{2}=z^{2}$ with $0<z<30$.
(a) $(5,12,13)$
(b) $(20,21,29)$
(c) $(2,5,7)$
(d) $(5,13,17)$
(8) $c a=c b(\bmod \cdot n) \Rightarrow a \quad b(\bmod \cdot n)$ only if \qquad .
(a) $(c, b)=1$
(b) $(\mathrm{c}, \mathrm{a})=\mathrm{b}$
(c) $(\mathrm{c}, \mathrm{a})=1$
(d) $(\mathrm{c}, \mathrm{n})=1$
(9) Reduced residue system modulo m contains \qquad elements.
(a) m
(b) $\phi(m-1)$
(c) $\phi(m)$
(d) $\phi(m+1)$
(10) $\phi(1008)=$ \qquad _
(a) 288
(b) 1007
(c) 144
(d) 126
Q. 2 Answer the following in short. (Attempt Any Ten)
(1) Prove that $[a, b, c] \frac{a b c}{(a b, b c, c a)}, \forall a, b, c>0$.
(2) Find g.c.d of two numbers by using Euclidean algorithm.
(3) Prove that $(a+b)[a, b]=b[a, a+b], \forall a, b>0$.
(4) If ' a ' is not square number but odd integer then prove that $S(a)$ is even integer.
(5) Prove that two successive Fibonacci numbers are relatively prime.
(6) If x is any real number and n is a positive integer then prove that $\left[\begin{array}{c}{[x} \\ n\end{array}\right]=\left[\begin{array}{c}x \\ n\end{array}\right]$
(7) If $a_{1} \equiv b_{1}(\bmod n) \& a_{2} \equiv b_{2}(\bmod n)$ then prove that $a_{1} a_{2} \equiv b_{1} b_{2}(\bmod n)$.
(8) If $a_{1} b_{1}(\bmod n)$ then prove that $a^{\prime \prime \prime} \equiv b_{i}^{\prime \prime \prime}(\bmod n), \forall m \subset N$ by using mathematical induction method.
(9) If $a \because b(\bmod m), a: b(\bmod n)$ and $K=[m, n]$ then prove that $a \vdots b(\bmod K)$
(10) Is $\{27,80,96,113,64\}$ a C. R. S. modulo 5 ? Justify.
(11) If $\cdot a^{m-1} \equiv 1(\bmod m) ;(a, m)=1 \& a^{n} \equiv 1(\bmod m)$ for any proper divisor n of $m-1$ then prove that m is prime.
(12) Prove that $\phi\left(p^{K}\right)=p^{K}\left(\begin{array}{ll}1 & 1 \\ & \\ \hline\end{array}\right)$ where p is prime.
Q. 3
(a) State and prove Fundamental theorem of divisibility.
(b) Prove that $\left(a^{m-1}, a^{n-1}\right) a^{(m, n)}-1$.
Q. 3
(a) State and prove Unique Factorization Theorem.
(b) Let g be a positive integer greater than 1 then prove that every positive integer ' a ' can be written uniquely in the form $a=c_{n} g^{\prime \prime}+c_{n}, g^{\prime \prime-1}+\ldots+c_{1} g+c_{0}$ where $n \geq 0, c i \in Z, 0 \leq c i<g, c_{n} \neq 0$.
Q. 4
(a) Prove that odd prime factor of $M_{p}(p>2)$ has the form $2 p t+1$ for some integer t.
(b) If a \& b are relatively prime number then prove that
(i) $T(a b) \cdots(a) \cdot T(b)$
(ii) $S(a b) \leqslant(a) \cdot S(b)$
(iii) $P(a b)=P^{P}(a)^{\gamma(b)} \cdot P^{P}(b)^{\gamma(a)}$

OR

Q. 4
(a) Prove that $S(a)<a \sqrt{ } a, \vee a>2$.
(b) Prove that odd prime factor of $a^{2^{n}}+(a>1)$ is of the form $2^{n+1}+1$ for some $t \in Z$.
Q. 5

Prove that the integer solution of $x^{2}+2 y^{2}+=z^{2} ;(x, y)=1$ can be [05]
(a) expressed as $x= \pm\left(a^{2} \cdot 2 b^{2}\right) ; y=2 a b ; z=a^{2}+2 b^{2}$.
(b) Solve the equation: $7 \mathrm{x}+19 \mathrm{y}=213$.
Q. 5
(a) Prove that the general integer solution of $x^{2}+y^{2}=z^{2}$ with $x, y, z>0$; $(x, y)=1$ and y is even is given by $x=a^{2}-b^{2} ; y=2 a b ; z=a^{2}+b^{2}$ where $a, b>0 ;(a, b)=1$ and one of a, b is odd and the other is even.
(b) State and prove necessary and sufficient condition that a positive [05] integer is divisible by 11 . Is 527590 divisible by 11 ?
Q. 6 Show that Euler's function is multiplicative and hence [10] find ϕ (142296).

OR

Q. 6 State and prove Chinese Remainder theorem and hence solve the [10] system of congruences: $x \equiv 2(\bmod 3) ; x \equiv 3(\bmod 5) ; x \equiv 2(\bmod 7)$.

