No. of printed pages: 3

SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination Friday, 22 November 2013 10.30 am – 1.30 pm US05CMTH05 – Mathematics Number Theory

Total Marks: 70

Note: Figures to the right indicates full marks.

Q.1	Answer the following b	y selecting the c	correct choice f	from the given	[10]
(1)	(4676_366) =				
(')	(a) 6 (b) 2	 (c) 1	(d) 4		
(2)	[12, 30] =		(4)		
()	(a) 60 (b) 30	(c) 6	(d) 360		
(3)	If 'a' is square number,	then S(a) is			
. ,	(a) Even	(b) 0			
	(c) Odd	(d) Prime	<i>the</i>		
(4)	Fermat Number F ₃ =	<u> </u>			
	(a) 3 (b) 13	(c) 65537	(d) 257		
(5)	T(810) =				
	(a) 41 (b) 20	(c) 38	(d) 28		
(6)	ax+by=c has integer so	lution if and only	if		
	(a) (a, b) = a	(b) (a, b) = t	0		
	(c) $\frac{(a,b)}{c}$	(d) $c/(a,b)$			
(7)	(x, y, z) =	is one of the	relative prim	e solution of	
. ,	$x^{2} + y^{2} = z^{2}$ with 0 <z<30< td=""><td>),</td><td></td><td></td><td></td></z<30<>),			
	(a) (5, 12, 13)	(b) (20, 21,	29)		
	(c) (2, 5, 7)	(d) (5, 13, 1	7)		
(8)	$ca \equiv cb \pmod{\cdot n} \Rightarrow a \equiv b \pmod{\cdot n}$ only if				
	(a) (c, b) = 1	(b) (c, a) = k)		
	(c) (c, a) = 1	(d) (c, n) = $(1 + 1)^{-1}$	1		
(9)	Reduced residue system modulo m contains elements.				
	(a) m (b) $\phi(m - m)$	1) (C) $\phi(m)$	(d) $\phi(m+1)$		
(10)	$\phi(1008) =$				
. ,	(a) 288 (b) 1007	(c) 144	(d) 126		
Q.2	Answer the following in	short. (Attempt)	Anv Ten)		[20]
	Du stati 1 9	bc	,		
(1)	Prove that $[a,b,c]$ (ab,bc,ca) , $\forall a,b,c>0$.				
(2)	Find g.c.d of two numbers by using Euclidean algorithm.				
(3)	Prove that $(a+b)[a,b] = b[a, a+b], \forall a,b>0.$				
(4)	If 'a' is not square number but odd integer then prove that				
. ,	S(a) is even integer.		U		

(5) Prove that two successive Fibonacci numbers are relatively prime.

[21]

- (6) If x is any real number and n is a positive integer then prove $\left| \begin{array}{c} x \\ n \end{array} \right| = \left| \begin{array}{c} x \\ n \end{array} \right|$ that
- (7) If $a_1 \equiv b_1 \pmod{n}$ & $a_2 \equiv b_2 \pmod{n}$ then prove that $a_1a_2 \equiv b_1b_2 \pmod{n}$.
- (8) If $a_1 = b_1 \pmod{n}$ then prove that $a^m \equiv b^m \pmod{n}$, $\forall m \in N$ by using mathematical induction method.
- (9) If K = [m, n] $a \equiv b \pmod{m}, a \equiv b \pmod{n}$ and then prove that $a \equiv b \pmod{K}$
- (10) Is {27, 80, 96, 113, 64} a C. R. S. modulo 5? Justify.
- (11) If $a^{m-1} \equiv 1 \pmod{m}; (a,m) = 1 \& a^n \neq 1 \pmod{m}$ for any proper divisor n of m-1 then prove that m is prime.

(12) Prove that
$$\phi(p^{\kappa}) = p^{\kappa} \left(1 - \frac{1}{p}\right)$$
 where p is prime.

Q.3 State and prove Fundamental theorem of divisibility. (a) Prove that $(a^{m+1}, a^{n+1}) = a^{(m,n)} - 1$. (b)

()

[05]

[05]

[05]

State and prove Unique Factorization Theorem. (a) [05] Let g be a positive integer greater than 1 then prove that every (b) [05] positive integer 'a' can be written uniquely in the form $a = c_n g^n + c_{n,1} g^{n+1} + \dots + c_1 g + c_0$ where $n \ge 0$, $c_i \in \mathbb{Z}$, $0 \le c_i < g, c_n \ne 0$.

Q.4

Q.3

- Prove that odd prime factor of M_p (p>2) has the form 2pt+1 for some (a) [05] integer t.
- If a & b are relatively prime number then prove that [05] (b) (i) $T(ab) = T(a) \cdot T(b)$
 - (ii) $S(ab) = S(a) \cdot S(b)$
 - (iii) $P(ab) = P(a)^{T(b)} \cdot P(b)^{T(a)}$

OR

Q.4

- (a) Prove that $S(a) < a\sqrt{a}, \forall a > 2$.
- (b) [05] Prove that odd prime factor of $a^{2^n} + (a > 1)$ is of the form $2^{n+1} + 1$ for some $t \in \mathbb{Z}$.
- Q.5

(a)	Prove that the integer solution of $x^2 + 2y^2 + = z^2$; $(x, y) = 1$ can be	[05]			
	expressed as $x = \pm (a^2 + 2b^2)$; $y = 2ab$; $z = a^2 + 2b^2$.				
(b)	Solve the equation: 7x+19y=213.	[05]			

Solve the equation: 7x+19y=213. (b)

OR

- Q.5
- (a) Prove that the general integer solution of $x^2+y^2=z^2$ with x, y, z > 0; [05] (x, y) = 1 and y is even is given by $x = a^2 - b^2$; y = 2ab; $z = a^2 + b^2$ where a, b > 0; (a, b) = 1 and one of a, b is odd and the other is even.
- (b) State and prove necessary and sufficient condition that a positive [05] integer is divisible by 11. Is 527590 divisible by 11?
- Q.6 Show that Euler's function is multiplicative and hence [10] find ϕ (142296).

OR

Q.6 State and prove Chinese Remainder theorem and hence solve the [10] system of congruences: $x \equiv 2 \pmod{3}$; $x \equiv 3 \pmod{5}$; $x \equiv 2 \pmod{7}$.

* * *

