No. of printed pages : 2

SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination 2013 Wednesday, 20th November 10.30 am - 1.30 pm US05CMTH04 - Abstract Algebra I

Total Marks: 70

Note: Figures to the right indicate marks.

[24]

Q.1	Answer the following by selecting the correct choice from the given [10] options.
(1)	$\left(Z_{7}^{*},\bullet\right)$ is a group then Z(G) =
(2)	(a) ϕ (b) { $\overline{1}$ } (c) { $\overline{1},\overline{3},\overline{5}$ } (d) G O (i) in (C [*] ,•) is (a) 1 (b) 3 (c) 4 (d) 2
(3)	Multiplicative inverse of 6 in Z_7^* is
(4)	(a) 3 (b) 6 (c) 2 (d) 1 A cyclic group of order is not a simple. (a) 15 (b) 17 (c) 19 (d) 23
(5)	is a generator of group Z_5^* .
(6)	(a) $\overline{0}$ (b) $\overline{1}$ (c) $\overline{2}$ (d) $\overline{4}$ Every cyclic group of order b4 is isomorphic to (a) Klein's 4 Group (b) Z (c) N (d) Z ₄
(7)	If $\theta: G \to G'$ is homomorphism, then θ is one-one iff ker $\theta =$
	(a) ϕ (b) {e} (c) { θ } (d) none
(8)	If H = Z ₂ , K = Z ₂ where Z ₂ = $\{0,1\}$ then H \oplus K is
(9)	(a) summation (b) Z_4 (c) Klein's 4 Group (d) none O $(S_n/A_n) = $
(10)	(a) 1 (b) 2 (c) 4 (d) 8 A permutation σ is said to be odd permutation of signature of σ is
	(a) -1 (b) +1 (c) 0 (d) alternate
Q.2 (1) (2)	Answer the following in short. (Attempt Any Ten)[20]Prove that every group has unique identity element.Prove or disprove: Union of two subgroups of a group is also a subgroup.
 (3) (4) (5) (6) (7) (8) 	State Cancellation laws for group. Find all generators of group $\{\pm 1, \pm i\}$ if possible. If G is a cyclic group, then prove that G is an Abelian group. Let H be any subgroup of group G, then prove that $aH = H \Leftrightarrow a \in H$. Prove that isomorphic image of an Abelian group is also Abelian. Let $\theta: G \to G'$ be a homomorphism, prove that ker. θ is a subgroup of G.

(9) (10)	Prove that $\theta: Z \to Z$ defined by $\theta(n) = -n$ is an automorphism of Z. Let G = $\langle a \rangle$ be any cyclic group of order 6. H = {e, a ² , a ⁴ }, K = {e, a ³ }.	
(11)	Show that G is an internal direct product of H and K. Prove that mapping $\mathcal{E}: S_n \rightarrow \{+1, -1\}$ given by $\sigma \rightarrow \mathcal{E}\sigma$ is a homomorphism of S_n onto the multiplicative group $\{-1, 1\}$.	
(12)	Prove that composition of two permutations need not be commutative.	
Q.3 (a) (b)	Prove that G is abelian iff G = Z(G). Let H and K be two subgroups of G, then prove that HK is a subgroup of G iff HK = KH. OR	[05] [05]
Q.3 (a)	Prove that (G, \bullet) is a non-commutative group, where G is set of all	[05]
(b)	2×2 non-singular matrices. Prove that intersection of any number of subgroup of a group G is also a subgroup of G.	[05] (
Q.4	Let G be any cyclic group and H is a subgroup of G, then prove that H is cyclic.	[10]
Q.4	OR State and prove Lagrange's theorem an Euler's theorem.	[10]
Q.5 (a) (b)	State and prove first isomorphism theorem. Prove that every infinite cyclic group has only one non-trivial automorphism.	[05] [05]
o 5	OR	
Q.5 (a) (b)	State and prove third isomorphism theorem. Let $G = \langle a \rangle$ be any finite cyclic group of order n. Then prove that the mapping $\theta: G \to G$ defined by $\theta(a) = a^m$ is an automorphism of G iff m is relatively prime to n.	[05] [05]
Q.6 (a) (b)	Prove that external direct product of two groups forms a group. Prove that A_n , the set of all even permutations of S_n , is a normal	[05] [05]
	subgroup of S _n and $O(A_n) = \frac{n!}{2}$	
	OR	
Q.6 (a)	Prove that the set S_n of all permutations on n symbols forms a	[05]
(b)	non-commutative group. Prove that the external direct product of two cyclic groups each of order 2 is the Klein's 4 group.	[05]

11111

ų.

)

L