No. of printed pages : 3

SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination 2013 Friday, 15th November 10.30 am - 1.30 pm US05CMTH02 - Real Analysis 2

Total Marks: 70

Note: Figures to the right indicate full marks.

- Q.1 Answer the following by selecting correct choice from the given [10] options.
- Sequence {(-1)ⁿ} (1) (b) is divergent (a) is convergent
 (b) is divergent
 (c) oscillates finitely
 (d) oscillates infinitely
 Every convergent sequence is ______. (a) is convergent (2)
- (a) oscillating (b) bounded (c) unbounded (d) none Sequence {-2ⁿ} (3)
 - (b) oscillates infinitely (a) converges (a) converges (b) oscillates infini (c) diverges to $+\infty$ (d) diverges to $-\infty$
- If a sequence $\{s_n\}$ is a sequence of partial sums of the series, then (4) $S_3 =$ (b) $u_1 \times u_2 \times u_3$
 - (a) $u_1 + u_2 + u_3$ $\frac{u_1 + u_2 + u_3}{3}$ (d) u₁-u₂-u₃ (C)
- A positive term series $\sum \frac{1}{n^p}$ is convergent iff _____. (a) p=1 (b) p<1 (c) p>1 (d) p<0 A positive term series $\sum_{n=1}^{\infty} u_n$ diverges if $\frac{\lim_{n \to \infty} (u_n)^{\frac{1}{n}}}{n \to \infty}$ (5)
- (6)
- (b) > 1 (c) = 1 (d) none (a) ≤ 1 (7)
- $\lim_{x \to 1} \lim_{y \to -1} \frac{4x^3y^2}{x^2 + y^2} =$ (a) 3 (b) 0 (c) 1 If $f(x,y) = x^3y^3 - 3x^2y^2$ then $f_y(0, 1) =$ ____ (c) 1 (d) 2
- (8) (d) 3 (a) 0 (b) 1 (c) 2
- The extreme value of f(a,b) is called maximum if f(x,y) f(a,b) (9) is
 - (a) alternate +ve & -ve (b) positive (d) none
 - (c) negative
- (10) A stationary point is called saddle point of function f if it is _ point. (b) not an extreme
 - (a) extreme (c) stationary
- (d) none

1

[36]

Q.2 Answer the following in short. (Attempt Any Ten) [20]
(1) Check the convergence of the sequence
$$\{1+(-1)^n\}$$
.
(2) If $\{a_n\}$ and $\{b_n\}$ are two sequences then show that
 $\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \frac{1}{n \to \infty} b_n$.
(3) Show that $\lim_{n \to \infty} \frac{(3n+1)(n-2)}{n(n+3)} = 3$.
(4) Investigate the behaviour of the series whose nth term is sin $\frac{1}{n}$.
(5) State D' Alembert's ratio test.
(6) If $\sum u_n = n$ and $\sum v_n = v$ then prove that $\sum (u_n + v_n) = u + v$.
(7) If $f(x, y) = 2x^2 xy + 2y^2$ then find f_n and f_n at the point (1, 2).
(8) Evaluate: $\sin^{-1}(xy-2)$.
(9) Define: Repeated limits.
(10) Derive Maclaurin's theorem by using Taylor's expansion.
(11) Write down the Taylor's expansion of $f(x, y)$ about the point (a, b).
(12) For $f(x, y) = y^2 + x^2 y + x^4$, find $f_{xx} f_{xy} - (f_{xy})^2$ at (0, 0).
(23)
(a) State and prove Bolzano-Weierstrass theorem for sequence.
(05)
(b) Show that $\begin{cases} \lim_{n \to \infty} \sqrt[n]{n-1} \\ n \to \infty \end{cases}$
(07)
(a) Show that $\{r^n\}$ converges iff $-1 \le 1$.
(b) State and prove cauchy's principle of convergence.
(05)
(b) Shate and prove cauchy's principle of convergence.
(05)
(c) Mose nth term is $(\frac{1}{(\log 2)^n} + \frac{1}{(\log 3)^n} + \dots + \frac{1}{(\log n)^n}$. diverges for $p > 0$.
(07)
(a) State and prove Cauchy's root test.
(b) Show that the series $\frac{1}{(\log 2)^n} + \frac{1}{(\log 3)^n} + \dots + \frac{1}{(\log n)^n}$. diverges for $p > 0$.
(07)
(a) State and prove Cauchy's root test.
(b) If the convergence of the series [05]
(c) Whose nth term is $(\frac{1}{n^{t-1}})$
(d) whose nth term is $(\frac{1}{n^{t-1}})^{t-1}$
(i) whose nth term is $(\frac{1}{n^{t-1}})^{t-1}$
(j) whose nth term is $(\frac{1}{n^{t-1}})^{t-1}$

Q.5

(a) If u = F(x, y, z) and z = (x, y) then find a formula for $\frac{\partial^2 u}{\partial x^2}$ in terms [05]

of the derivative of ${\sf F}$ and the derivative of z.

(b) Show that
$$\frac{\partial^2 \theta}{\partial x \partial y} = -\frac{\cos 2\theta}{r^2}$$

OR

[05]

- Q.5
- (a) Show that for given function limit exists at the origin but the repeated [05] limit does not.

$$f(x,y) = \frac{x\sin\left(\frac{1}{y}\right) + y\sin\left(\frac{1}{x}\right)}{0}, xy \neq 0$$

(b) If V is a function of two variables x & y and $x = r \cos \theta$, $y = r \sin \theta$ then [05] prove that $\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = \frac{\partial^2 v}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v}{\partial \theta^2} + \frac{1}{r} \frac{\partial v}{\partial r}$

- Q.6 State and prove Taylor's theorem. Also expand $e^{x} \tan^{-1} y$ about (1, [10] 1) up to second degree in powers of (x-1) and (y-1).
 - OR
- Q.6 State necessary and sufficient condition for f(x, y) to have an [10] extreme value at (a, b). Also find maxima and minima of the function $x^3 + y^3 3x 12y + 20$.

 \odot \odot \odot

3

¹ Construction of the second state of the second state of the second state of the second state second state second state second state of the second state of the

.