[36] No. of printed pages : 3

SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination

2013

Friday, $15^{\text {th }}$ November
$10.30 \mathrm{am}-1.30 \mathrm{pm}$
US05CMTH02 - Real Analysis 2
Total Marks: 70
Note: Figures to the right indicate full marks.
Q. 1 Answer the following by selecting correct choice from the given [10] options.
(1) Sequence $\left\{(-1)^{n}\right\}$ \qquad -
(a) is convergent
(b) is divergent
(c) oscillates finitely
(d) oscillates infinitely
(2) Every convergent sequence is \qquad .
(a) oscillating
(b) bounded
(c) unbounded
(d) none
(3) Sequence $\left\{-2^{n}\right\}$ \qquad .
(a) converges
(b) oscillates infinitely
(c) diverges to $+\infty$
(d) diverges to $-\infty$
(4) If a sequence $\left\{s_{n}\right\}$ is a sequence of partial sums of the series, then $\mathrm{S}_{3}=$ \qquad .
(a) $\mathrm{u}_{1}+\mathrm{u}_{2}+\mathrm{u}_{3}$
(b) $u_{1} \times u_{2} \times u_{3}^{\prime}$
(c) $\frac{u_{1}+u_{2}+u_{3}}{3}$
(d) $u_{1}-u_{2}-u_{3}$
(5) A positive term series $\sum \frac{1}{n^{p}}$ is convergent iff \qquad .
(a) $\mathrm{p}=1$
(b) $\mathrm{p}<1$
(c) $\mathrm{p}>1$
(d) $\mathrm{p}<0$
(6) A positive term series $\sum_{n=1}^{\infty} \mathrm{u}_{n}$ diverges if $\lim _{n \rightarrow \infty}\left(u_{n}\right)^{1 / n}$
(a) ≤ 1
(b) >1
(c) $=1$
(d) none
(7) $\lim \lim$ $x \rightarrow 1 y \rightarrow-1 \frac{4 x}{x^{2}+y^{2}}=$ \qquad .
(a) 3
(b) 0
(c) 1
(d) 2
(8) If $f(x, y)=x^{3} y^{3}-3 x^{2} y^{2}$ then $f_{y}(0,1)=$ \qquad
(a) 0
(b) 1
(c) 2
(d) 3
(9) The extreme value of $f(a, b)$ is called maximum if $f(x, y)-f(a, b)$ is \qquad .
(a) alternate +ve \& -ve
(b) positive
(c) negative
(d) none
(10) A stationary point is called saddle point of function f if it is
point.
(a) extreme
(b) not an extreme
(c) stationary
(d) none
Q. 2 Answer the following in short. (Attempt Any Ten)
[20]
(1) Check the convergence of the sequence $\left\{1+(-1)^{n}\right\}$.
(2) If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are two sequences then show that $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$.
(3) Show that $\lim _{n \rightarrow \infty} \frac{(3 n+1)(n \cdots 2)}{n(n+3)}=3$.
(4) Investigate the behaviour of the series whose $\mathrm{n}^{\text {th }}$ term is $\sin \frac{1}{n}$.
(5) State D' Alembert's ratio test.
(6) If $\sum u_{n}=n$ and $\sum v_{n}=v$ then prove that $\sum\left(u_{n}+v_{n}\right)=u+v$.
(7) If $f(\mathrm{x}, \mathrm{y})=2 \mathrm{x}^{2}-\mathrm{xy}+2 \mathrm{y}^{2}$ then find $f x$ and $f y$ at the point $(1,2)$.
(8) Evaluate: $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin ^{-1}(x y-2)}{\tan ^{-1}(3 x y-6)}$.
(9) Define: Repeated limits.
(10) Derive Maclaurin's theorem by using Taylor's expansion.
(11) Write down the Taylor's expansion of $f(x, y)$ about the point (a, b).
(12) For $f(\mathrm{x}, \mathrm{y})=y^{2}+x^{2} y+x^{4}$, find $f_{x x} f_{y y} \cdots(f x y)^{2}$ at $(0,0)$.
Q. 3
(a) State and prove Bolzano-Weierstrass theorem for sequence.
(b) Show that $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.

OR

Q. 3
(a) Show that $\left\{\mathrm{r}^{\mathrm{n}}\right\}$ converges iff $-1<\mathrm{r} \leq 1$.
(b) State and prove Cauchy's principle of convergence.
Q. 4
(a) State and prove comparison test in limit form.
(b) Show that the series $\frac{1}{(\log 2)^{p}}+\frac{1}{(\log 3)^{p}}+\ldots+\frac{1}{(\log n)^{p}} \ldots$ diverges for $p>0$.

OR

Q. 4
(a) State and prove Cauchy's root test.
(b) Test the convergence of the series
(i) whose $\mathrm{n}^{\text {th }}$ term is $\left(\mathrm{n}^{3}+1\right)^{1 / 3}-\mathrm{n}$
(ii) whose $\mathrm{n}^{\text {th }}$ term is $\frac{1}{n^{1+\frac{1}{n}}}$
Q. 5
(a) If $u=F(x, y, z)$ and $z=(x, y)$ then find a formula for $\frac{\partial^{2} u}{\partial x^{2}}$ in terms of the derivative of F and the derivative of z.
(b) Show that $\frac{\partial^{2} \theta}{\partial x \partial y}=\frac{\cos 2 \theta}{r^{2}}$

OR

Q. 5
(a) Show that for given function limit exists at the origin but the repeated limit does not.

$$
f(x, y)=\begin{array}{ll}
x \sin \left(\frac{1}{y}\right)+y \sin \left(\frac{1}{x}\right) & , x y \neq 0 \\
0 & , x y=0
\end{array}
$$

(b) If V is a function of two variables $\mathrm{x} \& \mathrm{y}$ and $x=r \cos \theta, y=r \sin \theta$ then prove that $\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{r^{2}} \frac{\partial^{2} v}{\partial \theta^{2}}+\frac{1 \partial v}{r \partial r}$
Q. 6 State and prove Taylor's theorem. Also expand $e^{x \cdot} \cdot \tan ^{-1} y$ about (1, [10] 1) up to second degree in powers of $(x-1)$ and ($y-1$).

OR
Q. 6 State necessary and sufficient condition for $f(x, y)$ to have an [10] extreme value at (a, b). Also find maxima and minima of the function $x^{3}+y^{3}-3 x-12 y+20$.

