Sardar Patel University Mathematics, B.Sc. Semester V
 Tuesday, $12^{\text {th }}$ November 2013
 $10.30 \mathrm{a} . \mathrm{m}$. to 1.30 p.m.
 US05CMTH01.- Real Analysis I

Maximum Marks: 70
Q. 1 Choose the correct option for each of the following.
(1) Which of the following is not an ordered field?
(a) \mathbb{R}
(b) \mathbb{Q}
(c) \mathbb{C}
(d) none of these
(2) The infimum of the set $\left\{\frac{1}{m}+\frac{1}{n}: m, n \in \mathbb{N}\right\}$ is
(a.) 0
(b) 1
(c) 2
(d) $\frac{1}{2}$
(3) Which of the following is not truc for $x, y \in \mathbb{R}$?
(a) $|x-y|=|y-x|$
(b) $|x-y| \leq|x|+|y|$
\mid (c) $|x+y| \leq|x|+|y|$
(d) $|x-y| \leq|x|-|y|$
(4) The set $\bigcap_{n=1}^{\infty}\left[0, \frac{1}{n}\right)$ is
(a) open
(c) both open and closed
(b) closed
(d) neither open nor closed
(5) The derived set of $(0,1]$ is
(a) $[0,1]$
(b) $[0,1)$
(c) $(0,1]$
(d) $(0,1)$
(6) Which of the following sets has a limit point?
(a) $\{n+\sin (n): n \in \mathbb{N}\}$
(c) $\{n+\sin (n)+\cos (n): n \in \mathbb{N}\}$
(b) $\{n+\cos (n): n \in \mathbb{N}\}$
(d) $\{\sin (n)+\cos (n): n \in \mathbb{N}\}$
(7) The value of $\lim _{x \rightarrow(0)^{+}} \frac{\sin x}{\sqrt{x}}$ is
(a) 0
(b) 1
(c) $\sqrt{2}$
(d) $\frac{1}{\sqrt{2}}$
(8) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=x$ if $x \in \mathbb{Q}$ and $f(x)=-x$ if $x \in \mathbb{R} \backslash \mathbb{Q}$. Which of the following is truc?
(a) f is continuous at every point of \mathbb{R}.
(c) f is discontinuous at every point of \mathbb{R}.
(b) f is discontinuous only at 0 .
(d) f is continuous only at 0 .
(9) Which of the following functions is not derivable at 0 ?
(a) $|x-1|^{2}$
(b) $|x|^{2}$
(c) $|\sin x|$
(d) $|\cos x|$
(10) Which of the following functions is strictly increasing in ($0, \frac{\pi}{2}$)?
(a) $\cos x$
(b) $-x^{2}$
(c) $-x$
(d) $\sin x$
Q. 2 Attempt any Ten.
(a) Let A be a non-empty subset of an ordered field F. If the supremum of A exists, then show that it is unique.
(b) State the Archemedian property.
(c) Let $a, x, y \in \mathbb{R}$, and let $a>0$. Show that $a^{x+y}=a^{x} a^{y}$.
(d) Find the interior of the set $\bigcup_{n=1}^{\infty}\left(n-\frac{1}{2^{n}}, n+\frac{1}{2^{n}}\right)$
(e) Define limit point of $A \subset \mathbb{R}$.
(f) Find the closure of \mathbb{Q} in \mathbb{R}.
(g) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and let $c \in \mathbb{R}$. If $\lim _{x \rightarrow c} f(x)=m>0$, then show that there exist $k>0$ and $\delta>0$ such that $f(x) \geq k$ for every $x \in \mathbb{R}$ satisfying $0<|x-c|<\delta$.
(h) Give an example of a function having discontinuity of first kind at some point.
(i) Evaluatc $\lim _{x \rightarrow 0+} \frac{e^{\frac{1}{x}}}{1+e^{\frac{1}{x}}}$.
(j) Let $f:[0,1] \rightarrow \mathbb{R}$ be $f(x)=x^{3}$. Show that f is uniformly continuous.
(k) If f is differentiable at c, then show that it is continuous at c.
(l) If $x>y$, then show that $x^{3}>y^{3}$.

Q. 3

(a) Define the function $E(x)$. Show that $E(x)=e^{x}$ for cvery $x \in \mathbb{R}$.

OR

(b) (i) Show that the real number field is Archemedian.
(ii) Show that there is no rational whose square is 13 .
Q. 4
(c) (i) Let, S be a non-empty bounded subset of \mathbb{R}. Let $m=\inf S$. If m is not in S, then show that m is a limit points of S.
(ii) If S is a bounded subset of \mathbb{R}, then show that the closure of S is also bounded.

OR
(d) (i) In usual notations show that $C(x+y)=C(x) C(y)-S(x) S(y)$ for $x, y \in \mathbb{R}$.
(ii) Let A be a non-empty subset of \mathbb{R}. Show that A is open in \mathbb{R} if and only if it is union of open intervals.
Q. 5
(e) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. If $f(a) f(b) \leq 0$, then show that there is $c \in[a, b]$ such that $f(c)=0$.

OR.
(f) (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$, and let $a \in \mathbb{R}$. If $\lim _{x \rightarrow a} f(x)$ exists, then show that it is unique.
(ii) Let $f:[a, b] \rightarrow \mathbb{R}$, and let $x \in[a, b]$. If $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x)$ for every sequence $\left\{x_{n}\right\}$ in $[a, b]$ converging to x, then show that f is continuous at x.

Q. 6

(g) Let $f:[a, b] \rightarrow \mathbb{R}$. Show that f is continuous if and only if it is uniformly continuous.

OR

(h) (i) If $0<x<1$, then show that $\log \left(\frac{1+x}{1-x}\right)<2 x\left(1+\frac{a^{2}}{3\left(1-x^{2}\right)}\right)$.
(ii) Let $f:[-1,1] \rightarrow \mathbb{R}$ be defined as $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$ if $x \neq 0$ and $f(0)=0$. Show that f is derivable at 0 . Also find $f^{\prime}(0)$.

