No of printed pages: 2

(24)

		Sardar Pat Mathematics, Tuesday, 12 th 10.30 a.m. US05CMTH01	el Uni B.Sc. S Novem to 1.30 Real	versity emester V aber 2013) p.m. Analysis I		t.		
	~		•	Maximum Marks: 70				
Q.1 (1)	Which of the followin	g is not an ordered	field?	ing.		[10]		
	(a) R	(b) Q	(c)	\mathbb{C}	(d) none of these			
(2)	2) The infimum of the set $\{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}$ is							
	(a) 0	(b) 1	(c)	2	(d) $\frac{1}{2}$			
(3)	B) Which of the following is not true for $x, y \in \mathbb{R}$? (a) $ x - y = y - x $ (b) $ x - y \le x + y $ (c) $ x + y \le x + y $ (d) $ x - y \le x - y $							
(4)	4) The set $\bigcap_{n=1}^{\infty} \left[0, \frac{1}{n}\right)$ is							
	(a) open (b) closed) (1	c) both open and d) neither open no	closed or closed	:		
(5)	The derived set of $(0,$	1] is						
	(a) [0,1]	(b) [0,1)	(c)	(0, 1]	(\mathbf{d}) (0,1)			
(6)	3) Which of the following sets has a limit point?							
	(a) $\{n + \sin(n) : n \in (b) \ \{n + \cos(n) : n \in (c) \}$	N} N}	(c) (d)	$ \{n + \sin(n) + \cos(n) : \{\sin(n) + \cos(n) : n\} $	$(n): n \in \mathbb{N} \}$ $n \in \mathbb{N} \}$			
(7)	The value of $\lim_{x\to 0^+}$	$\frac{\sin x}{\sqrt{x}}$ is						
	(a) 0	(b) 1	(c)	$\sqrt{2}$.	(d) $\frac{1}{\sqrt{2}}$			
(8)	(8) Let $f : \mathbb{R} \to \mathbb{R}$ be defined as $f(x) = x$ if $x \in \mathbb{Q}$ and $f(x) = -x$ if $x \in \mathbb{R} \setminus \mathbb{Q}$. Which of the following is true?							
	(a) f is continuous as(b) f is discontinuous	t every point of \mathbb{R} . s only at 0.	(c) (d)	f is discontinuous f is continuous of	s at every point of \mathbb{R} . nly at 0.			
(9) Which of the following functions is not derivable at 0?								
	(a) $ x-1 ^2$	(b) $ x ^2$. (c)	$ \sin x $	(d) $ \cos x $			

1

(10)	Which of the following functions is strictly increasing in $(0, \frac{\pi}{2})$?					
	(a) $\cos x$ (b) $-x^2$ (c) $-x$ (d) $\sin x$					
Q.2 (a)	 2 Attempt any <i>Ten.</i>) Let A be a non-empty subset of an ordered field F. If the supremum of A exists, then show that it is unique. 					
(b) (c) (d) (e) (f)) State the Archemedian property.) Let a, x, y ∈ ℝ, and let a > 0. Show that a^{x+y} - a^xa^y.) Find the interior of the set U[∞]_{n=1} (n - ¹/_{2ⁿ}, n + ¹/_{2ⁿ})) Define limit point of A ⊂ ℝ.) Find the closure of Q in ℝ.) Let f = ℝ → ℝ and let z ∈ ℝ. If lim f(z) = a > 0, then have that the provise h ≥ 0 and and the closure of Q in ℝ. 					
(g) (h)	Let $f : \mathbb{R} \to \mathbb{R}$, and let $c \in \mathbb{R}$. If $\max_{x \to c} f(x) = m > 0$, then show that there exist $k > 0$ and $\delta > 0$ such that $f(x) \ge k$ for every $x \in \mathbb{R}$ satisfying $0 < x - c < \delta$. Give an example of a function having discontinuity of first kind at some point.					
(i) (j) (k) (l)	Evaluate $\lim_{x\to 0^+} \frac{ex}{1+ex}$. Let $f: [0,1] \to \mathbb{R}$ be $f(x) = x^3$. Show that f is uniformly continuous. If f is differentiable at c , then show that it is continuous at c . If $x > y$, then show that $x^3 > y^3$.	\bigcirc				
Q.3 (a)	Define the function $E(x)$. Show that $E(x) = e^x$ for every $x \in \mathbb{R}$. OR	[10]				
(b)	(i) Show that the real number field is Archemedian.(ii) Show that there is no rational whose square is 13.	[5] [5]				
(c)	(i) Let S be a non-empty bounded subset of \mathbb{R} . Let $m = \inf S$. If m is not in S, then show that m is a limit points of S.	[5]				
	(ii) If S is a bounded subset of \mathbb{R} , then show that the closure of S is also bounded. OR	[5]				
(d)	 (i) In usual notations show that C(x + y) = C(x)C(y) - S(x)S(y) for x, y ∈ ℝ. (ii) Let A be a non-empty subset of ℝ. Show that A is open in ℝ if and only if it is union of open intervals. 	[5] [5]				
Q.5 (e)	Let $f : [a, b] \to \mathbb{R}$ be continuous. If $f(a)f(b) \leq 0$, then show that there is $c \in [a, b]$ such that $f(c) = 0$. OR	[10]				
(f)	 (i) Let f: R→ R, and let a ∈ R. If lim_{x→e} f(x) exists, then show that it is unique. (ii) Let f: [a, b] → R, and let x ∈ [a, b]. If lim_{n→∞} f(x_n) = f(x) for every sequence {x_n} in [a, b] converging to x, then show that f is continuous at x. 	[5] [5]				
Q.6 (g)	Let $f : [a, b] \to \mathbb{R}$. Show that f is continuous if and only if it is uniformly continuous. OB	[10]				
(h)	(i) If $0 < x < 1$, then show that $\log\left(\frac{1+x}{1-x}\right) < 2x\left(1 + \frac{x^2}{3(1-x^2)}\right)$. (ii) Let $f: [-1,1] \to \mathbb{R}$ be defined as $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ if $x \neq 0$ and $f(0) = 0$. Show that f is derivable at 0. Also find $f'(0)$. *****	[5] [5]				

. н э