SARDAR PATEL UNIVERSITY

Semester -V Examination

2013
18 November,2013
Course Code : USO5CCHEO3
(Inorganic Chemistry)
Time : 10:30 a.m. to 1:30 p.m.
Marks: 70

Q.1. Multiple Choice questions.

1) If Δo between $\mathrm{t}_{2} \mathrm{~g}$ and eg is 10 Dq then energies of $\mathrm{t}_{2} \mathrm{~g}$ and eg are \qquad
a) $4 \mathrm{Dq} \& 6 \mathrm{Dq}$
b) 6 Dq each
c) $6 \mathrm{Dq} \& 4 \mathrm{Dq}$
d) 4 Dq each.
2) Which type of substance or metals has higher susceptibility to magnetism?
a) Metal ions
b) Ferromagnetic
c) Diamagnetic
d) Anti - ferromegnetic
3) Point group of CH_{4} molecule is \qquad .
a) 0 h
b) Td
c) $\mathrm{D}_{3} \mathrm{~h}$
d) $\mathrm{D}_{6} \mathrm{~h}$
4) Which plane of symmetry plane present in $\mathrm{H}_{2} \mathrm{O}$?
a) $\sigma \mathrm{h}$
b) σv
c) $\sigma \mathrm{d}$
d) none of these.
5) Identity element is denoted by \qquad -
a) Sn
b) i
c) E
d) σ
6) The wave equation has the general form
a) $\frac{d^{2} x}{d y^{2}}=\mathrm{c}^{2} \frac{d^{2} y}{d t^{2}}$
b) $\frac{d^{2} y}{d x^{2}}=\mathrm{c}^{2} \frac{d^{2} t}{d y^{2}}$
c) $\frac{d^{2} y}{d x^{2}}=\frac{1}{c^{2}} \frac{d^{2} y}{d t^{2}}$
d) $\frac{d^{2} x}{d t^{2}}=\frac{1}{c^{2}} \frac{d^{2} t}{d y^{2}}$
7) What will be the degeneracy of the ground state for a particle in 3 -d box?
a) 1.5
b) 1
c) 3
d) 2
8) SN^{2} mechanism is known as .
a) substitution b) Association c) Dissociation d) Formation mechanism mechanism mechanism mechanism
9) In aqueous solution, the concentration of water is \qquad .
a) $[5.55 \mathrm{M}]$
b) $[0.55 \mathrm{M}]$
c) $[555 \mathrm{M}]$
d) $[55.5 \mathrm{M}]$
10) The Anation reaction is the reverse of
a) Acid hydrolysis
b) Base hydrolysis
c) Hydrolysis
d) none of these
Q.2. Short Type Questions (Attempt any Ten)
11) Costruct the multiplication table for $\mathrm{C}_{2} \mathrm{~V}$ point group.
12) Identify the symmetry elements and detect the point group of $\mathrm{F}_{2} \& \mathrm{NH}_{3}$.
13) Define: (a) Symmetry element (b) Symmetry Operation.
14) Skecth the diagram showing splitting of Octahedral complex.
15) Give microstate of $\mathrm{t}_{2} \mathrm{~g}_{2}^{2}$ configuration.
16) Write the Spectrochemical series.
17) Define: (a) Operator (b) Operand.
18) Discuss the linear operator.
19) Define turn over rule.
20) Mention all factors affecting the stability of complexes.
21) Define: (a) Labile complexes (b) Inert Complexes.
22) Distinguish between $S \mathrm{~N}^{1}$ and $S \mathrm{~N}^{2}$ mechanism.
Q.3. Prove with proper example $\mathrm{Sn}^{2 \mathrm{n}}=\mathrm{E}$ for $\mathrm{n}=$ odd number

$$
\begin{gathered}
\mathrm{Sn}^{\mathrm{n}}=\mathrm{E} \text { for } \mathrm{n}=\text { even number. } \\
\text { OR }
\end{gathered}
$$

Q.3. Give an account of $\mathrm{Cn}, \mathrm{CnV}$ and D nh groups.
Q.4.(a) Explain " $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{+3}$ is purple or violet in color".
(b) Calculate in the unit of $\Delta 0$ the LFSE of $\mathrm{Cr}^{+2} \quad(z=24)$ high spin and low spin ion in octahedral complex. Which state is more stable. Why? Given $\Delta \mathrm{o}=13,900 \mathrm{~cm}^{-1}, \mathrm{P}=23500 \mathrm{~cm}^{-1}$.

OR
Q.4.(a) Write note on Jahn- Teller effect.
(b) Distinguish between Paramagnetism and diamagnetism.
Q.5.(a) Discuss fourth Postulate of Quantum mechanics.
(b) Calculate the energies of the lowest two quantum states for an electron confined to one dimensional box of $5 \mathrm{~A}^{0}$ length and hence calculate the wave length of a radiation emitted in transition of electron from the excited state to ground state.
Given: $\mathrm{h}=6.625 \times 10^{-27} \mathrm{erg} \cdot \mathrm{sec}$ $\mathrm{m}=9.108 \times 10^{-28} \mathrm{gm}$.

OR

Q.5.(a) State the second postulate of Quantum mechnics. Expalin the Hermition operator and Unitary operator.
(b) Write a short note on: Normalization and orthogonality.
Q.6.(a) Discuss the acid hydrolysis reaction of six-co-ordinated Co (III) amine complexes.
(b) Write a note on: substitution reactions without breaking metal ligand bond.
Q.6.(a) Discuss the SN^{1} mechanism in ligand substitution reaction in octahedral complexs.
(b) Discuss the continuous variation (Job's) method for the determination of composition of the complex.

