SARDAR PATEL UNIVERSITY BSc (V Sem.) Examination Saturday, 1st December 2012 2.30 - 5.30 pm US05CMTH05 : Mathematics (Number Theory)

Total Marks: 70

Note: Figures to the right indicate full marks.

Q.1		estions by selecting the most appropriate [10]	
(1)		ect option in your answer book. then K ² +K+1 is number.	
(')	(a) Prime	(b) Square	
	(c) Not a Square	(d) Even	
(2)		; o≤r <b; (a,b)="</td" then=""></b;>	
	(a) 1	(b) (b, r)	
	(c) (a, r)	(d) a	
(3)			
()	(a) 1	(b) b	
	(c) a	(d) $ a $	
(4)	P(20)=		
(')	(a) 800	(b) 400	
	(a) 800 (c) 600	(d) 1000	
(5)			
	(a) 4	(b) 3	
(-)	(c) 5	(d) 2	
(6)	is Mersenne nu		
	(a) 31	(b) 8	
(7)	(c) 10	(d) 15	
(7)	An even and an odd intege (a) Congruent		
	(c) Incongruent	(d) Non of these	
(8)	.,	nt condition that $a \equiv b \pmod{m}$ is	
	-		
	(a) $\frac{m}{a}$	(b) $\frac{m}{(a-b)}$ (d) $\frac{(a-b)}{m}$	
	, m	(a-b)	
	(c) $\frac{m}{b}$	(d) $\frac{(m-1)}{m}$	
(9)	For an integer <i>m</i> , $\phi(m)$	$m-1, \forall m > 1$	
	(a) =	(b) >	
	(c) ≥	$(d) \leq$	
(10)			
	(a) (3, 6)	(b) (2, 2)	
	(c) (3, 4)	(d) (4, 3)	

- Q.2 Write down the answer of **Any Ten** in short.
 - (1) If K>0 is a common multiple of a and b, then prove that $\left(\frac{K}{a}, \frac{K}{b}\right) = \frac{K}{[a, b]}$
 - (2) If 'a' is a composite integer and q is its least positive divisor then prove that $q \le \sqrt{a}$.
 - (3) If n is an odd integer and n=ab, then prove that n can be decomposed as a difference of two square number.
 - (4) If 'x' is any real number and 'n' is a positive integer, then prove that $\left\lceil \frac{[x]}{n} \right\rceil = \left\lceil \frac{x}{n} \right\rceil$
 - (5) Find number of multiples of 7 among the integers from 200 to 500.
 - (6) Prove that $u_{n+3} = 3u_{n+1}-u_{n-1}$
 - (7) If $a \equiv b \pmod{m}$; $a \equiv b \pmod{n}$ and K = [m, n] then show that $a \equiv b \pmod{K}$
 - (8) Find the positive integer solution of $x^2 + xy-6 = 0$
 - (9) If $a_1 \equiv b_1 \pmod{n}$ then prove that $ca_1 \equiv cb_1 \pmod{n}$; $\forall C \in \mathbb{Z}$
- (10) Find order of 2 modulo 7.
- (11) Check whether {26, 37, 48, 59, 10} is complete residue system modulo 5 or not.
- (12) If (a, p)=1; p is prime, then prove that $a^{p-1}\equiv 1 \pmod{p}$

Q.3

- (a) State and prove unique factorization theorem. [05]
- (b) In usual notations prove that, $[a, b] \cdot (a, b) = ab$

OR

Q.3

- (a) Let g be a positive integer greater than 1 then prove that every [05] positive integer a can be written uniquely in the form a=C_ngⁿ+C_{n-1}gⁿ⁻¹+...+C₁g+C₀ where n≥0, C_i ∈ Z, 0≤c_i < g, C_n ≠0
 (b) State and prove fundamental theorem of divisibility.
- (b) State and prove fundamental theorem of divisibility. [05]

Q.4

- (a) Define: Mobious Function with appropriate illustrations. Prove that [05] Mobious Function is multiplicative.
- (b) Define: Mersenne Number with appropriate illustrations. Prove that any [05] prime factor of Mp is greater then p.

OR

Q.4

(a) Prove that
$$s(a) < a\sqrt{a}, \forall a > 2$$
 [05]

(b) In usual notations prove that,
$$P(n!) = \left[\frac{n}{p}\right] + \left[\frac{n}{p^2}\right] + \dots + \left[\frac{n}{p^{n+1}}\right]$$
 [05]
where, $p^m \le n < p^{m+1}$

[20]

[05]

Q.5 (a)	Prove that the general integer solution of $x^2+y^2=z^2$ with x, y, z >0 (x, y) =1 and y is even is given by $x=a^2-b^2$, y=2ab, $z=a^2+b^2$; where			
(b)	a, b>0; (a, b)=1 and one of a, b is odd and the other is even.	[05]		
	OR			
Q.5				
(a)	State and prove necessary and sufficient condition that a positive integer is divisible by 11. Is 765432 divisible by 11? Justify.	[05]		
(b)	Solve the equation: 19x+20y=1909	[05]		
Q.6	Define: Euler's Function. Prove that Euler's function is multiplicative. OR	[10]		
Q.6	State and prove Chinese Remainder theorem and hence solve the system of congruences: $x=1 \pmod{4}$, $x=3 \pmod{5}$, $x=2 \pmod{7}$	[10]		

* * *