SARDAR PATEL UNIVERSITY
 BSc (V Sem.) Examination
 Saturday, $1^{\text {st }}$ December 2012
 2.30-5.30 pm
 US05CMTH05 : Mathematics (Number Theory)

Total Marks: 70
Note: Figures to the right indicate full marks.
Q. 1 Answer the following questions by selecting the most appropriate [10] option. Write down the correct option in your answer book.
(1) If K is any positive integer, then $\mathrm{K}^{2}+\mathrm{K}+1$ is \qquad number.
(a) Prime
(b) Square
(c) Not a Square
(d) Even
(2) For integer a and b ; $\mathrm{a}=\mathrm{bq}+\mathrm{r}$; $\mathrm{o} \leq \mathrm{r}<\mathrm{b}$; then $(\mathrm{a}, \mathrm{b})=$ \qquad .
(a) 1
(b) (b, r)
(c) (a, r)
(d) $|a|$
(3) If b is multiple of ' a ', then $(a, b)=$ \qquad .
(a) 1
(b) b
(c) a
(d) $|a|$
(4) $P(20)=$ \qquad .
(a) 800
(b) 400
(c) 600
(d) 1000
(5) $\left(u_{16}, u_{12}\right)=$ \qquad .
(a) 4
(b) 3
(c) 5
(d) 2
(6)
(a) 31 is Mersenne number.
(c) 10
(b) 8
(d) 15
(7) An even and an odd integer are \qquad for modulo 2.
(a) Congruent
(b) May or May not Congruent
(c) Incongruent
(d) Non of these
(8) The necessary and sufficient condition that $a \equiv b(\bmod . m)$ is \qquad .
(a) $\frac{m}{a}$
(b) $\frac{m}{(a-b)}$
(c) $\frac{m}{b}$
(d) $\frac{(a-b)}{m}$
(9) For an integer $m, \phi(m)$ \qquad $m-1, \forall m>1$
(a) $=$
(b) $>$
(c) \geq
(d) \leq
(10) If $(\mathrm{m}, \mathrm{n})=$ \qquad , then $\phi(m, n) \neq \phi(m)+\phi(n)$
(a) $(3,6)$
(b) $(2,2)$
(c) $(3,4)$
(d) $(4,3)$
Q. 2 Write down the answer of Any Ten in short.
[20]
(1) If $\mathrm{K}>0$ is a common multiple of a and b , then prove that $\left(\frac{K}{a}, \frac{K}{b}\right)=\frac{K}{[a, b]}$
(2) If 'a' is a composite integer and q is its least positive divisor then prove that $q \leq \sqrt{a}$.
(3) If n is an odd integer and $\mathrm{n}=\mathrm{ab}$, then prove that n can be decomposed as a difference of two square number.
(4) If ' x ' is any real number and ' n ' is a positive integer, then prove that $\left[\frac{[x]}{n}\right]=\left[\frac{x}{n}\right]$
(5) Find number of multiples of 7 among the integers from 200 to 500.
(6) Prove that $u_{n+3}=3 u_{n+1}-u_{n-1}$
(7) If $a \equiv b(\bmod m) ; a \equiv b(\bmod n)$ and $K=[m, n]$ then show that $a \equiv b(\bmod K)$
(8) Find the positive integer solution of $x^{2}+x y-6=0$
(9) If $a_{1} \equiv b_{1}(\bmod n)$ then prove that $c a_{1} \equiv c b_{1}(\bmod n) ; \forall C \in Z$
(10) Find order of 2 modulo 7.
(11) Check whether $\{26,37,48,59,10\}$ is complete residue system modulo 5 or not.
(12) If $(a, p)=1 ; p$ is prime, then prove that $a^{p-1} \equiv 1(\bmod p)$
Q. 3
(a) State and prove unique factorization theorem.
(b) In usual notations prove that, $[a, b] \cdot(a, b)=a b$

OR

Q. 3
(a) Let g be a positive integer greater than 1 then prove that every positive integer a can be written uniquely in the form $a=C_{n} g^{n}+C_{n-1} g^{n-1}+\ldots .+C_{1} g+C_{0}$ where $n \geq 0, C_{i} \in Z, 0 \leq c_{i}<g, C_{n} \neq 0$
(b) State and prove fundamental theorem of divisibility.
Q. 4
(a) Define: Mobious Function with appropriate illustrations. Prove that Mobious Function is multiplicative.
(b) Define: Mersenne Number with appropriate illustrations. Prove that any prime factor of Mp is greater then p .

OR

Q. 4
(a) Prove that $s(a)<a \sqrt{a}, \forall a>2$
(b) In usual notations prove that, $P(n!)=\left[\frac{n}{p}\right]+\left[\frac{n}{p^{2}}\right]+\ldots .+\left[\frac{n}{p^{n+1}}\right]$ where, $p^{m} \leq n<p^{m+1}$
Q. 5
(a) Prove that the general integer solution of $x^{2}+y^{2}=z^{2}$ with $x, y, z>0$; $(x, y)=1$ and y is even is given by $x=a^{2}-b^{2}, y=2 a b, z=a^{2}+b^{2}$; where $a, b>0 ;(a, b)=1$ and one of a, b is odd and the other is even.
(b) Solve the equation: $7 x+19 y=213$

OR

Q. 5
(a) State and prove necessary and sufficient condition that a positive integer is divisible by 11 . Is 765432 divisible by 11 ? Justify.
(b) Solve the equation: $19 x+20 y=1909$
Q. 6 Define: Euler's Function. Prove that Euler's function is multiplicative. OR
Q. 6 State and prove Chinese Remainder theorem and hence solve the system of congruences: $x \equiv 1(\bmod 4), x \equiv 3(\bmod 5), x \equiv 2(\bmod 7)$

