SARDAR PATEL UNIVERSITY B.Sc.. (${ }^{\text {th }}$ Semester) EXAMINATION
 2012
 Tuesday, $27^{\text {th }}$ November
 2.30 pm to 51.30 pm
 US05CMTH02 - MATHEMATICS REAL ANALYSIS - 2

Total Marks : 70
Q. 1 Answer the following question by selecting the most appropriate option. Write down the option in your answer book.

1. If the sequence $\{\mathrm{Sn}\}$ is bounded then it
(a) Oscillates infinitely
(b) Oscillates finitely
(c) Diverges to $+\infty$
(d) Diverges to - ∞
2. A number ξ is said to be a limit point of a sequence $\{\mathrm{Sn}\}$ if every neighbourhood of ξ contains \qquad of members of the sequence.
(a) Infinite Number
(b) Finite Number
(c) Alteast one Number
(d) None of these
3. A sequence $\{S n\}$ is strictly increasing if for all n, \qquad
(a) $S_{n+1} \geq S_{n}$
(b) $S_{n+1} \leq S_{n}$
(c) $S_{n+1}<S_{n}$
(d) $S_{n+1}>S_{n}$.
4. For infinite series Σu_{n} if $\lim _{n \rightarrow \infty} u_{n}=0$, then the series \qquad
(a) Converges always
(b) Does not converge
(c) Converges sometimes
(d) None of these
5. The sequence of partial sums of a series with negative terms converges iff the sequence of partial sums is \qquad
(a) Bounded Above
(b) Unbounded Above
(c) Unbounded Below
(d) Bounded Below
6. The positive term geometric series $1+r+r^{2}+\ldots .$. converges for
(a) $r<1$
(b) $r>1$
(c) $r=1$
(d) None of these
7. A function is said to be continuous in a region if it is continuous at of the given region.
(a) Only one Point
(b) Every Point
(c) Some Point
(d) Nowhere
8. A sufficient condition that a function is continuous in a closed region is that both the partial derivative exists and are \qquad through out the region.
(a) Equal
(b) Unbounded
(c) Bounded
(d) None of these
9. The extreme value of $f(a, b)$ is called maximum if sign of $f(x, y)-f(a, b)$ is \qquad
(a) Positive
(b) Negative
(c) Alternate +ve \& -ve
(d) None of these
10. A necessary condition for $f(x, y)$ to have an extreme value at (a, b) is
that \qquad
(a) $f x(a, b)=0$
(b) $f y(a, b)=0$
(c) $f x y(a, b)=0$
(d) $f x(a, b)=0=f y(a, b)$
Q. 2 Write down the answer of Any Ten questions in short.
[20]
11. Prove that every convergent sequence is bounded.
12. Define: Convergence of sequence. Check whether $\{\mathrm{Sn}\}=\left\{\frac{1}{n}\right\}$ is convergent or not.
13. Show that $\left\{1+(-1)^{n}\right\}$ oscillates finitely.
14. Check the convergence of the series. $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\ldots \ldots \ldots$.
15. Show that the series. $1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\ldots \ldots \ldots$. is convergent.
16. Test the convergence of the serious $\sum \frac{1}{n^{1+\frac{1}{n}}}$
17. Evaluate $\lim _{(x, y) \rightarrow(0,0)} \mathrm{x} \cdot \frac{\sin \left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)}$
18. Define continuity at a point for the function of two variables.
19. Define: limit of a function of two variables.
20. State Maclaurin's Expansion.
21. Define : Extreme Value.
22. Write down rules to find exterme value.
Q. 3 (a) State and prove Bolzano-Weierstrass theorem for sequence.
(b) Prove that a sequence can not converge to more than one limit.

OR
Q. 3 (a) State and prove Cauchy's first theorem on limits.
(b) Prove that a necessary and sufficient condition for the convergence of a monotonic sequence is that it is bounded.
Q. 4 (a) State and prove comparison test of second order.
(b) Prove that the positive term geometric series $1+r+r^{2}+\ldots \ldots$ converges for $r<1$ and diverges to ∞ for $r \geq 1$.
OR
Q. 4 (a) State and prove Cauchy's Root Test.
(b) Check the convergence of the series.

$$
\frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5.6}{7^{2} \cdot 8^{2}}+
$$

$\frac{1.2}{3^{2} .4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5.6}{7^{2} .8^{2}}+$ \qquad
Q. 5 (a) Show that $f(x y, z-2 x)=0$ satisfies, under suitable conditions, the
equation. $\mathrm{x} \frac{\partial z}{\partial x}-\mathrm{y} \frac{\partial z}{\partial x}=2 \mathrm{x}$. What are these conditions ?
(b) Show that the function.

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\ 0 & ,(x, y)=(0,0)\end{cases}
$$

is continuous at the origin.

OR

Q. 5
(a) For the function $\mathrm{f}(\mathrm{x}, \mathrm{y})= \begin{cases}x \sin \left(\frac{1}{y}\right)+y \sin \left(\frac{1}{x}\right), & \mathrm{xy} \neq 0 \\ 0 \quad, \mathrm{xy}=0\end{cases}$

Prove that limit exists at the origin but the repeated limits do not.
(b) If $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y}{x^{2}+y^{2}}, & \text { if } x^{2}+y^{2} \neq 0 \\ 0, & \text { if } x=y=0\end{array}\right.$
then discuss about $\lim _{(x, y) \rightarrow(0,0)} \mathrm{f}(\mathrm{x}, \mathrm{y})$
Q. 6 State and prove Taylor's theorem. Also, expand $f(x, y)=x^{2} y+3 y-2$ in powers of ($\mathrm{x}-1$) and ($\mathrm{y}+2$)

OR

Q. 6 Prove that the first four terms of the Maclaurin's expansion of e^{ax} cosby are $1+\mathrm{ax}+\frac{a^{2} x^{2}-b^{2} y^{2}}{2!}+\frac{a^{3} x^{3}-3 a b^{2} x y^{2}}{3!}$
@ @ @

