[65]

SARDAR PATEL UNIVERSITY

Fifth Semester B. Sc. Examination Under CBCS

Thursday, -12-04-2018

Time: 2:00 pm to 5:00 pm

Subject: PHYSICS [US05CPHY04]

Thermodynamics and Statistical Physics

					Total Marks [70]		
INSTR	UCTIO	(2) The symbo	questions. Is have their usual mea the right indicates full m		•	······································	
Q-1	Cho	ose correct op	tion to answer the	following questions.	q	[10]	
	1	At absolute zero temperature, entropy of the system is					
		(a) zero	(b) constant	(c) increased	(d) decreased		
	2	An isochoric process of the system occurs at constant					
			(b) volume	-	(d) temperature		
	3	Thermodynan	nical potential enth	nalpy H is given by	· · ·		
		(a) H= U+P-V	(b) H= U+P+V	(c) H=U+PV	(d)) H=U-PV		
•	4		omentum coordinates e system is				
		(a) 6f	(b) 2f	(c) 4f	(d) f		
	5	An ensemble space is know		s constant along the tra	jectories in the phase		
<u></u> .		(a) stationary ensemble (b) dynamic ensemble					
		(c) canonical ensemble (d) none of these					
	···· 6 ·	For microcanonical ensemble, parameters remain constants.					
		(a) [V E T]	(b) [N V E]	(c) [μVT]	(d) [μΝΕ]		
	7	7 parameters remains constant in grandcanonical ensemble.					
		(a) [V E T]	(-b)[N V E]	(c) [V T μ]	(d) [μN E]		
	8	The spin quan	tum number s of tl	he is 1.	•		
		(a) μ-meson	е				
	9	In B-E system, the mean separation between the particles is smaller that the					
		(a) thermal l (b) De-Brogli	ength e length				
	10	of particles obeys the Pauli's exclusion principle.					
		(a) F-D systen	n (b) B-E syster	n (c) M-B system	(d) none of these		
		•			(PTO)		

Q-2	, , , , , , , , , , , , , , , , , , , ,					
	1 2	1				
	3	process. What do you mean by second order phase transition? Enlist its proper				
		examples.				
	4 5	Explain macroscopic and microscopic states. Deduce postulates of equal priori probability.				
	6 7	Define the terms: Phase point and Phase path.	-			
		Prove that most probable velocity $V_{mp} = \sqrt{\frac{2kT}{m}}$.				
, }	8 9	Distinguish between canonical and grand canonical ensemble. Write the expression for canonical partition function in classical statics and quantum statics.	.*			
•	10	What do you understand by Fermi Dirac system?				
	11 12	Define most probable energy E_p and velocity V_p . Derive an expression for entropy of the perfect gas for the B-E distribution.				
Q-3	(a)	Define first order phase transition and obtain Clausius-Clapeyron latent heat equation.	[05]			
•	(b)	Define Entropy. Obtain first and second T.dS equations.	[05]			
Q-3	(a)	OR Derive Maxwell's thermodynamical relations using alternative method.	[05]			
	(b)					
Q-4	(a)	Define Microcanonical ensemble with suitable figure and obtain an equation for Gibb's Microcanonical distribution function.	[06]			
	[b]	Obtain Sackur-Tetrode formula for a perfect gas. OR				
Q-4	[a]	State Liouville's theorem and prove that $\frac{dg}{dt} = 0$ using proper diagram.				
	[b]	Write a note on fluctuation in a physical quantity.	[04]			
Q-5	[a]	Write a note on grandcanonical partition function.	[05]			
	[b]	Discuss different thermodynamical quantities for grandcanonical ensemble. OR	[05]			
Q-5	[a]	Discuss Maxwell-Boltzmann distribution of velocities for gas in form of cartesian components.	[05]			
	[b]	Discuss canonical average deriving necessary equation.	[05]			
Q-6		Define Maxwell-Boltzmann system. Obtain an expression for the M-B distribution of the particles among various states.	[10]			
Q-6		OR What is Bose-Einstein system? Discuss the Bose-Einstein distribution of the particles among various states.	[10]			
