[96]

SARDAR PATEL UNIVERSITY

B.Sc. EXAMINATION (Semester- 5)

Monday, gth April 2018 2:00 p.m. to 05:00 p.m. **Subject: PHYSICS**

		Course: 05050				
		Title: Classical N	/lecha	nics		
				Total Mar	ks:70	
N.B: ((i) All th	he symbol have their usual meanings				
(ii) Figu	res at the right side of questions indicate	full mo	arks		
Q-1	Multi	ple Choice Questions (Attempt All)			(10)	
	(1)	The areal velocity of the particle in a				
		(a) Conserved		not conserved		
		(c) Zero		infinity		
	(2)	At the turning point in an arbitrary p	otent	al field the radial velocity is		
				•		
		(a) 1	(b)			
		(c) 0	• •	0.5		
	(3)	All the planet moves around the Sun				
		(a) Circular		elliptical		
		(c) hyperbolic		parabolic		
	(4)	The degree of freedom for a free pa				
		(a) 3	(b)			
		(c) 1	(d)	0		
	(5)	The number of independent variable				
		(a) N	(b)	2N	•	
	4	(c) 3N	(d)			
	(6)	The Hamiltonian function is define b	γ			
		(a) $H = F + V$		H = F - V		
	<i>(</i> _)	(c) $H = T - V$	` '	H = T + V		
	(7)	A frame of reference moving with a constant velocity relative to a fixed				
		frame is called frame				
		(a) real		imaginary		
	(0)	(c) inertial		Non inertial		
	(8)	The term $\vec{\omega} \times (\vec{\omega} \times \vec{r})$ is called				
				centripetal acceleration		
	(9)	(c) angular acceleration				
	(3)	The shortest distance between two (a) circular	(b)	hyperbolic		
		(a) circular (c) parabolic	(d)	Straight line		
	(10)	In variational principle the line integ	٠,	=		
	(10)	end points is	si ai Oi	some function between two		
		(a) zero	(b)	infinite		
		(c) extremum	(d)	one		
		(%) CAUCINUM	(4)	J.,J		
Q-2	Short	t Questions (Attempt any Ten)			(20)	
•	(1)					
	(2)	State the Kepler's first law of planet		otion		
	(3)	Define parabolic orbit	•		- A 1	
	-	•		CF	1.0.)	

	(4) (5) (6) (7) (8) (9) (10) (11) (12)	What is degree of freedom? Define Scleronomous and Rheonomous constraints Construct the Lagrangian for Spherical pendulum Define inertial and non-inertial frame of reference Define spherical top and asymmetric top Define symmetrical top and rigid rotator State the variational principle State the Hamilton's principle Define geodesic line	
Q-3	(a)	Explain the laws of gravitational and electromagnetic forces and show that electromagnetic forces are much stronger than the gravitational forces in the interaction of atomic and subatomic particles.	(6)
	(b)	Derive the Gauss' law for electrostatic fields OR	(4)
Q-3	(a)	Derive the equation of motion of equivalent one body and explain why apple falls toward the earth and not the earth towards the apple?	(6)
	(b)	State and prove Kepler's third law of planetary motion	(4)
Q-4	(a)	What are constraints? Explain, giving examples, the meaning of holonomic and nonholonomic constraints	(6)
	(b)	Discuss the virtual work done for motion of a system and derive the mathematical statement of D'Alembert's statement OR	(4)
Q-4	(a)	Derive the Lagrange's equation of motion for a conservative system from D'Alembert's principle	(6)
	(b)	Construct the Lagrangian of Atwood machine and derive its the equation of motion	(4)
Q-5	(a)	Discuss the rotating coordinate system and derive necessary expressions	(6)
	(b)	State and prove Euler's theorem OR	(4)
Q-5	(a)	Derive the expression of angular momentum and kinetic energy	(6)
	(b)	Discuss the Coriolis force	(4)
Q-6		Discuss the technique of calculus of variation and derive the Euler's equation. Also derive second form of it. OR	(10)
Q-6		Find the Lagrangian for series and parallel connection of inductance L, resistance R and canacitor C with an external electromotive force s(t)	(10)

__X__