SEAT No.

[60]

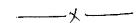
SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER-V)EXAMINATION-2018

16-04-2018, Monday 2:00 p.m. to 5:00 p.m. US05CMTH06(MATHEMATICS)(MECHANICS-I)

	Maximum Marks: 70	
Q.1	hoose the correct option in the following questions, mention the correct option in the answerbook.	[10]
(1)	nit of Force in C.G.S. is= a) Newton (b) Poundal (c) Dyne (d) none of these	
(2)	Poundal=Dynes. a) 13862 (b) 13682 (c) 13826 (d) none of these	
(3)	Moment of vector (X, Y, Z) about the perpendicular to the plane O_{xy} at origin O is $M =$ a) $xY + yX$ (b) $Xy - Yx$ (c) $Xy + Yx$ (d) $xY - yX$	
(4)	Ta particle is in equilibrium then vector sum of all external forces is a) 0 (b) 1 (c) -1 (d) none of these	
(5)	branch of mechanics which deals with the motion of system is known as a) Statics (b) Dynamics (c) acceleration (d) none of these	
(6)	The work done by the force \overline{F} is $\delta W = \dots$ a) $\cos \theta \delta s$ (b) $F \cos \theta$ (c) $\overline{F} \cos \theta \delta s$ (d) $F \cos \theta \delta s$	
(7)	$V(A) = \dots$ a) $W(A, A_0)$ (b) $W(A_0, A)$ (c) $-W(A, A_0)$ (d) none of these	
(8)	f density ρ is constant, then the body is said to be a) homogeneous (b) heterogeneous (c) rigid (d) none of these	
(9)	Fangential component of velocity is (a) $\frac{ds}{dt}$ (b) $\frac{dv}{dt}$ (c) $\frac{v^2}{\rho}$ (d) $\frac{da}{dt}$	
(10)	Radial component of acceleration of a particle moving in a plane is (a) $\ddot{r} + r\dot{\theta}^2$ (b) $\dot{r} - r\dot{\theta}$ (c) $\ddot{r} + r\dot{\theta}^2$ (d) $\ddot{r} - r\dot{\theta}^2$	
Q.2	Attempt any Ten.	[20
(2) (3) (4) (5) (6) (7) (8)	If $V=x^2+y^2$, then find components of grad V . Also find gradiant at point $(1,0)$ in the direction making angle 45° with X-axis. Explain gradient vector. Define: (1) Free vector (2) Bound vector. Let a force with components (X,Y,Z) be acting at a point (x,y,z) , then its moment along a line perpendicular to $XY-Plane$ along the origin O is given by $M=xY-yX$. $ABCD$ is a square of side 2 unit, forces 1, 2, 3, 4 lb wt act along $\overline{AB}, \overline{CB}, \overline{DC}, \overline{DA}$ respectively find the algebraic sum of their moments about Center of a square. If O is the incenter of \triangle ABC and forces $\overline{P}, \overline{Q}, \overline{R}$ are acting along $\overline{OA}, \overline{OB}, \overline{OC}$ respectively, then show that $P:Q:R=\cos A/2:\cos B/2:\cos C/2$. Define: (i) Couples (ii) Moment of couple. Forces of magnitude 2, 4, 6, 8, $4\sqrt{2}$ are acting along $\overline{AB}, \overline{BC}, \overline{CD}, \overline{DA}$ and diagonal \overline{AC} respectively of the $\Box ABCD$, then show that the resultant force is a couple. State Newton's law of gravitation.	e r. n
(9	State Newton's law of gravitation.	

CP. T. O.)

[20]


(11)	In usual notations prove that $c^2 + s^2 = y^2$. Define: (i) Catenary (ii) Span. Prove that $T = \omega Y + H$, where $\omega = H/C$.	
Q.3 (a)	What curves are described by a particle moving in accordance with the equation $\overline{r} = b\cos pt \ \hat{i} + c\sin pt \ \hat{j}$, where $p,\ c$ and b are constants and $\hat{i},\ \hat{j}$ are fixed unit vectors perpendicular to one another. Also prove that the direction of acceleration is towards the origin.	[6]
(b)	The resultant force of \overline{P} and \overline{Q} is \overline{R} . If \overline{R} is doubled, \overline{Q} is doubled and if \overline{Q} is reversed, \overline{R} is again doubled then show that $P:Q:R=\sqrt{2}:\sqrt{3}:\sqrt{2}$. OR	[4]
Q.3 (c)	State and prove equation of motion of a particle moving in a straight line.	[6]
(d)	Two forces acting in opposite direction on a particle have a resultant of 34lbwt. If they act at right angle to one another, their resultant would be 50lbwt. Find the magnitude of these two forces.	[4]
Q.4 (a)	Three forces \overline{P} , \overline{Q} and \overline{R} acting at a point are in equilibrium and the angle between \overline{P} and \overline{Q} is doubled of angle between \overline{P} and \overline{R} . Prove that $R^2 = Q(Q - P)$.	[5]
(b)	State and prove theorem of Varignon .	[5]
	OR	
Q.4 (c)	State and prove Lamy's theorem.	[5]
(d)	A body of mass 140 $lbwt$ is suspended by two strings of length 5 ft and 12 ft . Their ends are attached to a rod of length 13 ft . Find the tension in the strings.	[5]
Q.5 (a)	Prove that the mass center of a system exists and is unique.	[6]
(b)	Explain the principle of virtual work by illustration. OR	[4]
Q.5 (c)	Prove that the increment in potential energy is equal to the work done, with its sign changed.	6
(d)	Find the center of gravity of the area bounded by the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ in the first quadrant.	[4]
Q.6 (a)	Derive the differential equation of suspension bridge and show that it represents the equation of parabola.	[5
(b)	In usual notations prove that $s = c \tan \psi$.	[5

Q.6

(c) Obtain radial and transverse components of velocity and acceleration of a particle moving in a plane. [5]

OR

(d) A uniform chain AB of length l hangs in the same horizontal line, so that the tension is n times [5] that of the lowest point. Show that the span AB must be $\frac{l}{\sqrt{n^2-1}}\log\left[n+\sqrt{n^2-1}\right]$.

