No of printed pages: 3 ## [72/AU6] ## SARDAR PATEL UNIVERSITY B.Sc.(SEMESTER - V) EXAMINATION (N) Folday, 13-04-2018 (d) MATHEMATICS: US05CMTH05 (Number Theory) | Time : 02 :00 | p. m. | to | 0 5 :00 | p.m. | |----------------------|--------------|----|----------------|------| |----------------------|--------------|----|----------------|------| Que.1 Fill in the blanks. Maximum Marks: 70 10 (1) If n is odd integer then $3^n + 1$ is divisible by - (a) 5 (b) 3 (c) 4 - $(2) (a, b) \geq \dots \forall a, b \in \mathbb{Z}.$ - (a) a (b) b (c) 0 (d) 1 - (3) (a, c) = (b, c) = 1 then - (a) (ab, c) = 1 (b) (a, b) = 1 (c) (a, b)c = 1 (d) a = b = 1 - (4) is Fermat's number. - (a) 100 (b) 116 (c) 327 (d) 257 - (5) $F_0F_1F_2....F_{n-1} =$ - (a) $F_n + 2$ (b) F_{n+2} (c) $F_n 2$ (d) F_{n-2} - (6) $\mu(12) = \dots$ - (a) 1 (b) 0 (c) -1 (d) 3 - (7) 765432 is not divisible by - (a) 7 (b) 3 (c) 4 (d) 9 - (8) $\phi(m) + S(m) = mT(m)$ iff m is - (a) not prime (b) odd (c) even (d) prime - (9) $18x \equiv 30 \pmod{42}$ has only solutions. - (a) 3 (b) 2 (c) 1 (d) 6 - (10) ϕ (128) = - (a) 128 (b) 16 (c) 64 (d) 32 (P. T. O.) Que.2 Answer the following (Any Ten) 20 - (1) Prove that (a + b)[a, b] = b[a, a + b], $\forall a, b > 0$. - (2) State and prove Euclid's result for prime number. - (3) Find (136, 228, 392). - (4) Find highest power of 3 in 50!. - (5) Prove that $[x] + [y] \le [x + y] \le [x] + [y] + 1$. - (6) If a and b are relatively prime numbers then prove that $P(ab) = P(a)^{T(b)}P(b)^{T(a)}$. - (7) If $a \equiv b \pmod{n}$, then prove that $a^m \equiv b^m \pmod{n}$, $\forall m \in \mathbb{N}$, by using mathematical induction method. - (8) Find positive integer solution of 7x + 19y = 213. - (9) Find all relatively prime solution of $x^2 + y^2 = z^2$ with 0 < z < 30 . - (10) Find $\phi(243) + \phi(81) + \phi(27) + \phi(9) + \phi(3)$. - (11) Solve the equation $103x \equiv 57 \pmod{211}$. - (12) Find order of 5 modulo 13. - Que.3 (a) Prove that there are infinitely many prime number of the form 4n-1. - 3 3 4 5 5 5 (c) State and prove Fundamental theorem of divisibility. (b) Prove that $[a, b, c] = \frac{abc}{(ab, bc, ca)}$, $\forall a, b, c > 0$. OR - Que.3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form $a=c_ng^n+c_{n-1}g^{n-1}+\ldots\ldots+c_1g+c_0$, where $n\geq 0$, $c_i\in\mathbb{Z}$, $0\leq c_i< g$, $c_n\neq 0$. - (b) State and prove fundamental theorem of arithmetic. - Que.4 (a) Prove that odd prime factor of M_p (p > 2) has the form 2pt + 1, for some integer t. - (b) Define Mersenne number. Prove that any prime factor of M_p is greater than p. OR - Que.4 (a) Prove that every prime factor of F_n (n > 2) is of the form $2^{n+2}t + 1$, for some integer t. 5 - (b) Let x be any positive real number and n be any positive integer then prove that among the integers from 1 to x the number of multipliers of n is $\left[\frac{x}{n}\right]$. - (c) Prove that $(u_m, u_n) = u_{(m,n)}$. - Que.5 (a) Prove that $x^4 + y^4 = z^2$ has no nonzero positive integer solution. Hence prove that $x^{-4} + y^{-4} = z^{-4}$ has no nonzero positive integer solution. - (b) Find a necessary and sufficient condition that a positive integer is divisible by 13. 7 6 3 4 3 OR - Que.5 (a) Prove that the integer solution of $x^2 + 2y^2 = z^2$, (x, y) = 1 can be expressed as $x = \pm (a^2 2b^2)$, y = 2ab, $z = a^2 + 2b^2$. - (b) Find positive integer solution of 19x + 20y = 1909 - Que.6 (a) Prove that the system of congruences, $x \equiv a \pmod{m}$; $x \equiv b \pmod{n}$ has solution iff $a \equiv b \pmod{(m,n)}$. Also prove that system has unique solution with respect to modulo [m,n]. - (b) If (a, m) = 1 $a^{m-1} \equiv 1 \pmod{m}$, and $a^n \neq 1 \pmod{m}$ for any proper divisor n of m-1 then prove that m is prime. - (c) Solve the equation $12x + 15 \equiv 0 \pmod{45}$. OR - Que.6 (a) State and prove Chinese remainder theorem. - (b) If a_1 , a_2 , a_3 , ..., $a_{\Phi(m)}$ is RRS modulo m and (a, m) = 1, then prove that - (i) aa_1 , aa_2 , aa_3 ,..., $aa_{\Phi(m)}$ is RRS mod m. - (ii) $aa_1 + b$, $aa_2 + b$, $aa_3 + b$,..., $aa_{\Phi(m)} + b$ is not RRS mod m, where b is any integer. - (c) If $m = p_1^{m_1} p_2^{m_2} p_3^{m_3} \dots p_k^{m_k}$, where all p_i are primes then prove that $$\phi(m) = m\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\dots\left(1 - \frac{1}{p_k}\right).$$ ---X