No of printed pages: 3

SARDAR PATEL UNIVERSITY

B.Sc. (SEMESTER - V) EXAMINATION (NC)

Saturday, 14th May.2016 MATHEMATICS: US05CMTH05

(Number Theory)

Time: 10:30 a.m. to 01:30 p.m.

Maximum Marks: 70

Que.1 Fill in the blanks.

10

(1) If n is even integer then $3^n + 1$ is divisible by

- (a) 5 (b)
- 2 (c) 3
- (d)

(2) $(a, 0) = \dots, \forall a \in \mathbb{Z}$

- (a) -a (b) |a| (c) a (d)

(3) If a/bc and (a, b) = 1 then

- (a) a (b) a/c (c) b/c (d)
- c/a

(4) $T(20) = \dots$

- (a) 3 (b) 4 (c) 5

- (d)

(5) $P(60) = \dots$

- (a) 120 (b) 60 (c) 60⁶
- (d) 60^{5}

25

(6) is Perfect number.

- (a) 12 (b) 6 (c) 9
- (d)

(7) If $ca \equiv ba (mod n) \Rightarrow a \equiv b (mod n)$ only if

- (a) (b, a) = 1 (b) (b, n) = 1 (c) (a, n) = 1 (d) (c, n) = 1

(8) ax + by = c has integer solution if and only if

- (a) (a,b) = a (b) (a,b) = b (c) (a,b)/c (d) c/(a,b)

(9) If m is prime then $\phi(m)$m-1.

- (a) \neq (b) > (c) < (d)

(10) ϕ (128) =

- (a) 128 (b) 16 (c)
- 64
- (d) 32

5

5

- (1) Prove that $(a-s)/(ab+st) \Rightarrow (a-s)/(at+sb)$.
- (2) Find (4678, 342).
- (3) Prove that (a, b) = (a, b + ka), for $k \in \mathbb{Z}$.
- (4) If a and b are relatively prime numbers then prove that T(ab) = T(a)T(b).
- (5) Prove that $[x] + [y] \le [x + y] \le [x] + [y] + 1$.
- (6) Prove that u_m/u_{mn} .
- (7) If $ca \equiv cb \pmod{n}$ and (c, n) = 1 then prove that $a \equiv b \pmod{n}$.
- (8) If $a_1 \equiv b_1 \pmod{n}$ and $a_2 \equiv b_2 \pmod{n}$, then prove that $a_1 + a_2 \equiv b_1 + b_2 \pmod{n}$.
- (9) Is 765432 divided by 7?
- (10) If $a_1, a_2, a_3 \ldots, a_k$ is CRS modulo m and (a, m) = 1, then prove that $aa_1 + b, aa_2 + b, aa_3 + b, \ldots, aa_k + b$ forms a CRS mod m, where b is any integer.
- (11) State and prove Fermat's theorem .
- (12) Find $\phi(243) + \phi(81) + \phi(27) + \phi(9) + \phi(3)$.
- Que.3 (a) Let g be a positive integer greater than 1 then prove that every positive integer a can can be written uniquely in the form $a = c_n g^n + c_{n-1} g^{n-1} + \dots + c_1 g + c_0$, where $n \ge 0$, $c_i \in \mathbb{Z}$, $0 \le c_i < g$, $c_n \ne 0$.
 - (b) Prove that (a, b) = d iff $\exists x, y \in \mathbb{Z}$ such that xa + yb = d.

OR

- Que.3 (a) State and prove Fundamental theorem of divisibility.
 - (b) State and prove unique factorization theorem for positive integers . 5
- Que.4 (a) Prove that $S(a) < a\sqrt{a}$, $\forall a > 2$.
 - (b) Prove that odd prime factor of $a^{2^n} + 1$ (a > 1) is of the form $2^{n+1}t + 1$, for some integer t.

OR.

- Que.4 (a) Prove that the necessary and sufficient condition that a positive integer a can be even perfect number is $a = 2^n(2^{n+1} 1)$, (n > 1) and $2^{n+1} 1$ is prime.
 - (b) Prove that $u_{n+1}^2 = u_n^2 + 3u_{n-1}^2 + 2[u_{n-2}^2 + u_{n-3}^2 + \dots + u_1]$.
- Que.5 (a) Prove that the integer solution of $x^2+2y^2=z^2$, (x,y) = 1 can be expressed as $x=\pm(a^2-2b^2)$, y=2ab, $z=a^2+2b^2$.

(b) Prove that the positive integer solution of $x^{-1}+y^{-1}=z^{-1}$, (x,y,z)=1 has and must have the form x=a(a+b), y=b(a+b), z=ab, where a, b>0, (a,b)=1. 5

OR

- Que.5 (a) Find positive integer solution of 19x + 20y = 1909.
 - (b) Prove that a positive integer n is divided by 3 iff the sum of its digits is divisible by 3 . 5

5

- Que.6 (a) State and prove Chinese remainder theorem .
 - (b) Solve the system of congruences $x \equiv 2 \pmod{3}$; $x \equiv 3 \pmod{5}$; $x \equiv 2 \pmod{7}$.

OR

- Que.6 (a) Prove that a set of k integers $a_1, a_2, a_3 \dots, a_k$ is a complete residue system modulo m iff (i) k = m (ii) $a_i \neq a_j \pmod{m}$, $\forall i \neq j$.
 - (b) Prove that m is prime iff $\phi(m) + S(m) = mT(m)$.

(3)