(A-9) Seat NO! -

## SARDAR PATEL UNIVERSITY

B.Sc. (SEMESTER - V) EXAMINATION-2016 (NC)

12th may 2016

US05CMTH03(Metric Spaces)

Maximum Marks: 70

Q.1 Choose the correct option in the following questions, mention the correct option in the answerbook.

- (1) Let d be a metric on M. Then which of the following is not a metric on M?
  - (a)  $d_1(x, y) = \min\{1, d(x, y)\}$
- (b)  $d_2(x, y) = \max\{1, d(x, y)\}$
- (c)  $d_3(x,y) = \frac{d(x,y)}{1+d(x,y)}$
- (d)  $d_4(x, y) = 5d(x, y)$

(2) The set of all cluster points of  $A = \{1, \frac{1}{5}, \frac{1}{5^2}, \dots, \frac{1}{5^n}, \dots\}$  is...

- (b) A
- (c)  $A \cup \{0\}$

(3) Let  $A = [-2, 3] \subset \mathbb{R}^1$ . Which of the following subset of A is an open subset of A? (c) (1, 3] (d) (0, 2](b) [1, 2) (4) Let A and B be subsets of a metric space M, then which of the following is true?

- (a)  $A \subset \overline{B} \Rightarrow A \subset B$
- (c)  $\overline{A} \subset \overline{B} \Rightarrow A \subset B$
- (b)  $A \subset B \Rightarrow \overline{A} = \overline{B}$ (d)  $\overline{A} \subset B \Rightarrow A \subset B$
- (5) If  $E = [1, 2] \cup \{3\} \subset \mathbb{R}^1$ , then  $\overline{E}$ ...?
  - (a)  $(1, 2) \cup \{3\}$
- (b) E
- (c) [1, 2]
- (d) [1, 3]

(6) Which of the following subset of ℝ is complete with usual metric of ℝ?

- (b)  $\{1, 2, \dots 100\}$
- (c) (2, 7]
- $(d) | -1, 1 \rangle$

(7) Which of the following subset of  $\mathbb{R}_d$  is totally bounded?

- (b) (-1, 1) (c)  $\{1, 2, \dots, 20^{20}\}$
- (d) N

(8) For  $[0,7] \subset \mathbb{R}^1$ , let  $f:[0,7] \to \mathbb{R}^1$  be a continuous function. Then which of the following is not true?

- (a)  $R_f$  is connected (b)  $R_f$  is compact (c)  $R_f$  is not compact
- (d) f is bounded

(9) Let  $f:[0,\frac{1}{3}]\to[0,\frac{1}{3}]$  be defined by  $f(x)=x^2$ , then which of the following is not true?

(a) f is a contraction.

- (b) Range of f is compact
- (c) Range of f is connected
- (d) none of these

(10) Let A be any subset of  $\mathbb{R}_d$ , then which of the following is true?

- (a) A is connected
- (b) A is compact
- (c) A is bounded
- (d) A is totally bounded

[20]

## Q.2 Attempt any Ten:

- (1) Show that if  $\rho$  is a metric for a set M, then so is  $4\rho$ .
- (2) If  $\{x_n\}$  is a convergent sequence in  $\mathbb{R}_d$ , then show that there exist a positive integer N such that  $x_N = x_{N+1} = x_{N+2} = \dots$
- (3) Define: (i) Convergence of sequence in metric space (ii) Cauchy sequence.
- (4) Let A be an open subset of the metric space M. If  $B \subset A$  is open in A, then prove that B is open in M.
- (5) Let M = [-2, 3] with usual metric. Then find B[3/4, 5/3] and B[7/4, 2].
- (6) Is arbitrary union of closed sets is closed? Justify!
- (7) Can a bounded subset of the metric space M be totally bounded? Justify!
- (8) If  $(M, \rho)$  is a complete metric space and A is closed subset of M, Then prove that  $(A, \rho)$  is also complete.

(P.T.O.)

(9) Prove that every contraction mapping is continuous. (10) Prove that every finite subset of any metric space is compact. (11) Give an example of a function which is one-one, onto, continuous but its inverse is not continuous. (12) Let f be a continuous real valued function on [a, b], then prove that f is bounded. Q.3(a) Prove that the real valued function f is continuous at  $a \in \mathbb{R}^1$  if an only if whenever  $\{x_n\}_{n=1}^{\infty}$  is a sequence of real numbers converging to a, then the sequence  $\{f(x_n)\}_{n=1}^{\infty}$  converges to f(a). (b) Let  $(M, \rho)$  be a metric space. If  $\{s_n\}_{n=1}^{\infty}$  is a convergent sequence of points of M, then show that  $\{s_n\}_{n=1}^{\infty}$  is Cauchy. Is converse true? Justify! OR $Q_i3$ (c) Prove that the real valued function f is continuous at  $a \in \mathbb{R}$  if and only if the inverse image under f of any open ball  $B[f(a); \varepsilon]$  about f(a) contains an open ball  $B[a; \delta]$  about a. (d) Let (M, d) be a metric space and  $d_1(x, y) = \frac{d(x, y)}{1 + d(x, y)}$ . Is  $d_1$  a metric on M? Justify! [5] (a) Show that every open subset G of  $\mathbb{R}$  can be written  $G = \bigcup I_n$ , where  $I_1, I_2, I_3, \ldots$  are a finite number or a countable number of open intervals which are mutually disjoint. (i.e.  $I_m \cap I_n = \phi$  if  $m \neq n$ ) (b) Let  $(M_1, \rho_1)$  and  $(M_2, \rho_2)$  be metric spaces and let  $f: M_1 \to M_2$ . Then prove that f is continuous on  $M_1$  if and only if  $f^{-1}(F)$  is closed subset of  $M_1$  whenever F is a closed subset of  $M_2$ . Q.4(c) Prove that a subset A of  $\mathbb{R}$  is connected iff whenever  $a \in A$ ,  $b \in B$  with a < b, then  $c \in A$  for any c such that a < c < b. (d) Let  $(M, \rho)$  be a metric space and let A be a proper subset of M. Then prove that a subset  $G_A$  of A is an open subset of  $(A, \rho)$  iff there exist an open subset  $G_M$  of  $(M, \rho)$  such that  $G_A = A \cap G_M$ . Q.5(a) Prove that a subset A of the metric space  $(M, \rho)$  is totally bounded iff for every  $\epsilon > 0$ , A contains [5]a finite subset  $\{x_1, x_2, \ldots, x_n\}$  which is  $\epsilon$ -dense in A. [5] (b) State and prove Picard's Fixed Point theorem. ORQ.5(c) State and prove generalized nested interval theorem. [5] (d) Prove that a subset A of  $\mathbb{R}$  is totally bounded iff A is bounded. [5] Q.6(a) Let  $(M_1, \rho_1)$  be a compact metric space. If f is continuous function from  $M_1$  into a metric space [5]  $(M_2, \rho_2)$ , then show that f is uniformly continuous on  $M_1$ . (b) Prove that a metric space M is compact iff whenever  $\mathcal{F}$  is a family of closed subsets of M with the finite intersection property, then  $\bigcap_{F\in\mathcal{F}} F \neq \phi$ . ORQ.6(c) If the metric space M has the Heine-Borel property, then prove that M is compact. [6] (d) Define Uniform continuity. Show that  $f: \mathbb{R} \to \mathbb{R}$  defined by  $f(x) = x^2$  is not uniformly continuous. [4]