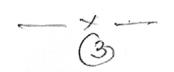
Sardar Patel University

B. Sc. (Semester - V) Examination (NC)

Date	9 TH MAY 2016	rial Chemistry	Time: 10:30pm to 01:30pm				
Note	COURSE NO: US05CIO s: Figures to the right indicate full mark	CH01 (Organic Ch	emistry - II) Total marks: 70				
====							
Q.1	Answer the following Multiple Choice C	Questions. (All are	compulsory) (10)				
1	Pyridine reacts with HCl to form						
	a. Pyridinium chloride	c.	3-Chloropyridine				
	b. 2-Chloropyridine	d.	All of these				
2	Pyridine reacts with a mixture of KNC	Pyridine reacts with a mixture of KNO3 and H ₂ SO ₄ at 300°C to give					
	a. 1-Nitropyridine	с.	3-Nitropyridine				
	b. 2-Nitropyridine	d.	4-Nitropyridine				
. 3	Pyridine undergoes electrophilic subs	rophilic substitution with fuming H ₂ SO ₄ at 350°C to					
	a. 2-Pyridinesulphonic acid	С.	3-Pyridinesulphonic acid				
	b. 4-Pyridinesulphonic acid	d.	None of these				
4	. All carbon atoms in naphthalene are						
	 a. sp hybridized 	С.	sp ² hybridised				
	b. sp³ hybridised	d.	None of these				
5	. Naphthalene undergoes reduction	$_{1}$ with H_{2} , in th	e presence of Nicatalyst at high				
	temperature and pressure to give.						
	a. Phthaliec acid	c.	Benzoic acid				
	b. Decalin	d.	Tetralin				
6	6. Anthracene undergoes electrophilic substitution reactions mainly at						
	a. C-1	С.	C-9				
	b. C-2	d.	C-1 and C-2				
7	. Which of the following carbocation h	nas the least stabi	lity?				
	a. Methyl	C.	Tert-butyl				
	b. Ethyl	d.	isopropyl				
8	8. Aluminum isopropoxide is an important reagent.						
	a. Reducing	C.	Brominating				
	b. Oxidizing	d.	Methylating				
9	Number of NMR signals obtained in case of Acetone and Acetic acid respectively						
	a. 1 & 1	С.	1 & 3				
	b. 1 & 2	d.	None of these				
1	0. The DBE value for the MF C ₁₅ H ₁₄ O						
	a. 01	c.	05				
	b. 02	d.	None of these				

Q.2 Answer the following short questions (Any Ten) 1. What mean by heterocyclic compound? Enlist various heterocyclic compounds with their names. 2. Discuss the rule for naming mono heterocyclic compound with suitable examples. 3. Predict the relative basicity of amines (RCH₂NH₂), Imines (RCH=NH) and Nitriles (RC≡N) 4. Give synthesis of α - and β -Naphthol from Naphthalene. 5. Give resonating structures of Phenanthrene. 6. Write the resonance structures of Anthracene and Naphthalene. 7. What are nucleophile? Give an example. 8. What are free radicals? 9. What are carbanions? 10. Write about information obtained from IR Spectroscopy. 11. Predict the signal pattern of the -CH₃ protons in the NMR spectra of the CH3CHBr2. 12. The NMR spectrum of compound C₂H₆O, shows one signal only, a singlet. Deduce the structure of it. (10)Q.3 Discuss the structure of Pyridine and Pyrrole. (10)Q.3 Discuss the following. A. Nucleophilic substitution in Pyridine. B. Electrophilic substitution in Thiophene. (10)Q.4 Write notes on following: Electrophilic substitution reaction in Phenanthrene. B. Synthesis of Naphthalene. ÓR (10)Q.4 Discuss the structure of Naphthalene. Q.5 Describe the mechanism and important application of the following reaction. (10)A. Meerwein-Ponndorf-Verley Reduction B. Aldol condensation C. Diels-Alder Reaction. OR Q.5 Write notes on Pinacol-Pinacolone Rearrangement and N- Bromosuccinimide. (10)Q.6 From the following sets of N.M.R., IR and UV data, give a structure consistent with each of the following: 1. Molecular weight: 264 gm/mol; %age: C=36.30%, H=3.1% and Br=60.6%; UV: λmax: 210nm; NMR: δ 4.65 (singlet, 20.0sq) and 7.30 (singlet, 20.0sq). 2. Molecular weight: 130gm/mol; %age: C=73.84%, H=13.84% and O=12.34%; UV: λmax: 200nm; NMR: δ 1.1 (singlet for all protons). OR 1. Molecular weight: 100 gm/mol; %age: C=72.00%, H=12.0%.; UV: λmax: 292nm; IR: 2930, 1712, 1261cm-1.; NMR: δ 1.60 (singlet, 23.20sq), δ 1.45 (doublet, 15.00sq), δ 1.25 (multiplate, 7.50sq) and δ 0.92 (doublet, 45.00sq). 2. Molecular weight: 56gm/mol; %age: C=85.7%, H=14.3%; UV: λ max: 210nm; NMR: δ 1.6 (doublet 30.0sq) δ 5.6 (quatrate 10.0sq).

(20)


Characteristic Infrared Absorption Frequencies.

Bond	Compound type	Frequency range cm ⁻¹	
C-H	Alkanes.	2850-2960, 1350-1470.	
C-H	Alkenes.	3020-3080 (m), 675-1000.	
C-H	Aromatic rings.	3000-3100 (<i>m</i>), 675-870.	
C-H	Alkynes.	3300	
C=C	Alkenes.	1640-1680 (v)	
C≡C	Alkynes.	2100-2260 (<i>v</i>)	
C=C	Aromatic rings.	1500, 1600 (v)	
C-O	Alcohols, Ethers, Carboxylic acids, Esters.	1080-1300	
C=O	Aldehyde, Ketones, Carboxylic acids, Esters.	1690-1760	
О-Н	Monomeric alcohols, Phenols	3610-3640 (<i>v</i>)	
	Hydrogen bonded alcohols, Phenols.	3200-3600 (broad)	
	Carboxylic acids.	2500-3000 (broad)	
N-H	Amines.	3300-3500 (m)	
C-N	Amines.	1180-1360.	
C≡N	Nitriles.	2210-2260 (<i>v</i>)	
-NO ₂	Nitro compounds	1515-1560, 1345-1385	

Double	Bonds				
Structure unit	Frequency cm ⁻¹				
C=C	1620-1680				
C=O					
Aldehydes and ketones	1710-1750				
Carboxylic acids	1700-1725				
Acid anhydrides	1800-1850 & 1740-1790				
Acyl halides	1770-1815				
Esters	1730-1750				
Amides	1680-1700				
Substituted derivatives of Benzene					
Mono substituted	730-770 & 690-710				
Ortho-disubstituted	735-770				
Meta-disubstituted	750-810 & 680- 730				
Para-disubstituted	790-840				

Characteristic Proton Chemical Shift

Characteristic Field Fie								
Type of Proton		Chemical shift	Type of Proton		Chemical shift			
		δ, ppm			δ, ppm			
Cyclopropane		0.2	Alcohols	H-C-OH	3.4 - 4			
Primary	R-CH₃	0.9 -1.8	Ethers	H-C-OR	3.3 - 4			
Secondary	R_2CH_2	1.3	Esters	RCOO-C-H	3.7 - 4.1			
Tertiary	R₃CH	1.5	Esters	H-C-COOR	2 - 2.2			
Vinylic	C=C-H	4.6 -5.9	Acids	H-C-COOH	2-2.6			
Acetylenic C≡C-H		2 - 3	Carbonyl compounds H-C-C=O		2 – 2.7			
Aromatic	Ar-H	6 - 8.5	Aldehydic	RCH=O	9 – 10			
Benzylic	Ar-C-H	2.2 - 3	Hydroxylic	RO-H	1 - 5.5			
Allylic	C=C-C-H	1.7	Phenolic	ArO-H	4 – 12			
Fluorides	H-C-F	4 - 4.5	Enolic	C=C-O-H	15 – 17			
Chlorides	H-C-Cl	3 - 4	Carboxylic	RCOO-H	10.5 – 12			
Bromides	H-C-Br	2.5 - 4	Amino	R-NH ₂	1-5			
Iodides	H-C-I	2 – 4						

