No. of Printed Pages: 2

SARDAR PATEL UNIVERSITY, VALLABH VIDYANAGAR

BCA (4th Semester) External Examination Monday, 1st April 2019

Subject: US04FBCA01 (Computer Based Numerical & Statistical Method)

Time: 02:00 to 03:00 p.m.

Total Marks: 70

Rema	rk: Scientific Calculator is allowed			[10]								
Q.1	Multiple Chaige Orgestons											
1.	$f(a) < 0$, $f(b) > 0$ and if $x_0 \in (a, b)$ is first approximation with $f(x_0) < 0$ then in disection method											
	(A) A is to be replaced by c	(B)	x ₀ is to be replaced by a									
	(C) B is to be replaced by x_0	(D)	x_0 is to be replaced by b									
2.	From the following method is not iterative method.											
	(A) False Position Method (B) Bisection (C) Lagranges Method (D) None											
3.	From the following method is the best method to obtain root of equation I(X)—0											
	(A) Nowton Raphson (R) Risection Method (C) False Position Method (D) None											
4.	The main disadvantage of Lagrangian interpolation is that it is difficult to find the order of the											
	to be fitted.											
	(A) Equation (B) Algorithm (C) Polynomial	(D)	None									
5.	is not a type of interpolation method	(I) (I)	Divide Difference									
	(A) Moving Average Method	(B)	Backward Difference									
	(C) Forward Difference	(D)										
6.	The system of linear equation AX = B can be solved by Gauss-Seidel method only if											
	(A) All diagonal elements of A are non zero	(B) A is skew symmetric(D) All diagonal elements of A are zero										
	(C) All diagonal elements of A are dominant	(D)										
7.	We can find solution of system of linear, algebraic equ	ations usi	Dissetion Method									
	(A) Gauss Seidel Method	(B)	Bisection Method									
	(C) Newton Raphson Method	(D)	None									
8.	The system of linear equation AX = B can be solved by matrix inversion method only if											
	(A) A≠0	(B)	$ \mathbf{A} = 0$									
	(C) A ≠0	(D)	A is symmetric									
	1 1	ed										
9.	Gradual, long-term movement in time-series data is called (A) trends (B) Seasonal variation											
	(A) trends	(D)	Exponential variation									
	(C) Cycle In ratio to moving average method for seasonal indice	(D) o the rati	o of an observed value to the moving									
10.	In ratio to moving average method for seasonal molecular and the influence of	s, the rati	of the objective time.									
	average remove the influence of	(B)	Cyclic variation									
	(A) Trend(C) Trend and cyclic both	(D)	None									
Δ'Δ		(-)		[20]								
Q.2	Define Deleting arror and absolute error		•									
i.	wild - lea to obtain amprovimate col	ution for	given non-linear equations.									
2	Use the secont method to obtain approximate solution	of the ec	quation X^3 -5x-3=0. [initial approx. 2 & 3]									
3	· + + + + + + + + + + + + + + + + + + +											
4												
5												
6	Define interpolation.		$dv(x) = d^2v(x)$									
7	If x lies in the uppar half of the table and if $x = x_k$, then what is $\frac{dy(x)}{dx}$ and $\frac{d^2y(x)}{dx^2}$?											
	11/4 11/4 11/1		ax ax									
8	If x lies in the lower half of the table and if $x = x_k$, then what is $\frac{dy(x)}{dx}$ and $\frac{d^2y(x)}{dx^2}$?											
g	List only various direct and iterative methods.											
10	Define Time Series											
11	List out the merits and de-merits of Ration to moving average method.											
12	CTC' C-mins											
12	2											

		1													r001
	Q.3	(A)	Write an algorith	orithm for False Position Method									[03]		
		(B)	Obtain the root of equation $X^3 - 2X - 5 = 0$ up to 3 decimal points. (Using Bisection									[07]			
		(-)	Method) where $X_1=2$ and $X_2=3$												
			OR												
	Q.3	(A)	Write an algorith	hm for B	isecti	on Me	thod.								[03]
	۷.5	(B)	Find root of equ	ation X3	-X-4=	=0 up t	o 3 dec	ima	al po	oints (1	using:	false p	osition 1	method)	[07]
		(1)	where $X_1=1$ and			·				`	Ū	_			
	0.4	(4)	$If Y = 2X^3 - X^2$	1.782 # 1.287 # 1	1 Calc	ulate i	he valu	ie o	fΥ	corres	nondi	ng to	,		[04]
	Q.4	(A)	X = 0,1,2,3,4,5	and form	r care	le of c	entral o	liffe	 ren	ce.	F	U			_
		(D)	Estimate the exp	and form	of lif	e at th	e age o	f 16	ve	ars by	using	follov	ving tabl	e.	[06]
		(B)	Age in Year	10	15	20		- 	25 30		30	35			
			Expec. of life	35.4	32.3						23.2	3.2 20.4			
			Expec. of the	3311	1 52.5		OF				! <u></u>				
,	0.4	(A)	at the state of the state of the serving groun of Rs								[06]				
	Q.4	(11)	25 and Rs. 35.	ing wor							_				
			Earning			10	20	T	30	30 40		40 50		60	
			No of Workers			50 150					50	700		800	
		(B)	following table	gives the	e cens	sus por	ouiation	of	tow	n for t	he ye	ars 19	31 to 19	71. Estimate	[04]
		(1)	the population 1	for the ve	ear 19	65. Us	sing Int	erpo	olati	ion.	·				
			Year		931	19		19	51	1	961	19	71		
			Population	4	6		66 8			9		101			
	Q.5	(A)	Solve the follow	wing sys	tem o	f equa	ion usi	ng r	mat	rix inv	ersior	meth	od		[05]
	Q.5	()	$2X_1 - 2X_2 + 5X$	a = 13.	$2X_1 +$	- 3X2 -	⊦ 4X₃ =	: 20	, 3	$X_1 - X$	(2 + 3)	$X_3 = 1$	U		50.53
		(B)	Solve the equat	ion by G	auss l	Seidel	Metho	d ac	cur	ate to	4 sign	ifican	aigit.		[05]
		` '	$10X_1 + X_2 + 2X_1$	$\zeta_3 = 44$	$, 2X_1$	+ 10>	$X_2 + X_3$	= 5	1,	$X_1 + 2$	$X_2 + 1$	$0X_3 =$	÷61		
		•					0.								1051
	Q.5	(A)	From the given).75) a	nd f'(0	.85))	- 1 4	~	11.	-0		[05]
			X),50		75	1.				1.50			
		•	Y = f(x)	0).13		0.42		.0 1.95			2.35			[05]
		(B)	Solve the follo	llowing system of equation using matrix inversion method								[OJ]			
			$3X_1 + X_2 + X_3 = 8$, $2X_1 - 3X_2 - 2X_3 = -5$, $7X_1 + 2X_2 - 5X_3 = 0$								[05]				
	Q.6	(A)	Calculate the seasonal indices by ratio to moving average method								[05]				
			Year	Qtr-1			Qtr-2		QTR-3			Qtr-4			
			1972	75			60		54			59			
			1973	86		65			63			80			
			1974	90		72			66			85			
			1975	100	78 72 93							[05]			
		(B)	Calcinate the trend values by the mod of moving average									[00]			
			following data.	1972	1973	1974	1975	19	76	1977	1978	197	9 1980	1981 1982	
			Year 1971 Sugar 37.4		38.7	39.5	47.9	42.		48.4	64.4	58.4		51.4 84.4	
		•	Sugar 37.4	31.1	36.7	37.5)R	1		1				
	0.6	(4)	Calculate the s	Calculate the seasonal indices by ratio to moving average method									[05]		
,	Q.6	(A)		Qtr-1	maro		Qtr-2		QTR-3 Qtr-4						
			Year	25			30		21			32			
			1970 1971	27			28		25			34			
			1971	22			27		21			30			
			1072	24		25	25		20 33						
		(B)	Calculate the tr	Calculate the trend values by method of moving average – assuming a 3 yearly and 5 yearly from								[05]			
		(D)	following data.												
			Year 1971		1973	1974	1975	19′	\rightarrow	1977	1978			_	
			Y 500 540 550 530 520 560 600 640 620 640												
				_											