No. of Printed/Pages: 3 Sc

BCA Sem-IV EXAMINATION, 2018 Sub.: US04FBCA01 (COMPUTER BASED NUMERICAL & STATISTICAL METHOD)

Date	: 04/04/2018 (2.01 Wednesday	pili to 3.00 pili)		Maximum Ma	rks: 70		
Q-1 (1)	Write the correct of For the function f(x) and if at i th iteration	$x^3 - 2x - 5 = 0$ if th	e root of equation	lies between (2,3) bisection method i	[10]		
	given c= (a) $\frac{3+2.75}{2}$	(b) $\frac{2+2.5}{2}$	(c) $\frac{3+2.5}{2}$	(d) none			
(2)	The number 0.01850						
• •	(a) 3	(b) 4	(c) 5	(d) 6			
(3)		of interpolation is	used for unequal	y spaced functions.			
(4)	(a) Forward difference (b) backward difference (c) Newton's divided difference (d) None						
(5)	(a) Divided difference (c) Backward difference y depends on x can	ence ence	(d) No	rward difference one			
	(a) $f(x)$ or y_x	(b) f(xy)	(c) f(yx)	(d) none			
(6)	is called th	ne forward differer	nce operator.				
(~)	(a) Δ		(c) Ø	(d) ∪			
(7)	We can find solution (a) Newton-Raphs (c) Gauss-Seidel	n of system of line son method method	(b) Bise (d) Non	ection method e of these	<u></u>		
(8)	The system of linea						
	(a) $A \neq 0$		(c) $A = 0$	(d) A is symmet	ric		
(9)	(a) become more a (b) are rarely perfe (c) are more accur (d) all of the above	accurate with longe ect ate for individual it	tems than for grou	ps of items			
(10)	Irregular variations (a) lockouts and s (c) floods Answer the follow	trikes	(b) (d)	epidemics all the above	[20]		
Q:2		f	,,				
(1)	Write algorithm for	Secant method.			4 0 m = 3		
•		(1)		(P.T.O)		

- (2) Define Relative error and absolute error.
- (3) Describe the stopping rules to obtain approximate solution for given non-linear equations.
- (4) Use the secant method to obtain approximate solution of the equation $X^3-5x-3=0$. [initial approx. 2 & 3]
- (5) Define Interpolation.

Close Symmetrials of his

- (6) List the utilities of time series.
- (8) List only various direct and iterative methods.
- If x lies in the upper half of the table and if $x_k < x < x_{k+1}$, then what is $\frac{dy(x)}{dx}$ and $\frac{d^2y(x)}{dx^2}$?
- (10) Write a note on Forecasting by the use of Time Series Analysis.
- (11) Differentiate between linear and non-linear trend.
- (12) Write different methods of Interpolation.
- Q-3 Find the root of equation $x^3 4x 9 = 0$ correct up to four decimal places
- (a) using Bisection Method.
- (b) Find the root of equation $x^3 x^2 1 = 0$ correct up to four decimal places using Secant method. [05]

OR

- Q-3 Find the root of equation $x^3 x 1 = 0$ correct up to four decimal places using [05]
- (d) Find the root of equation $xe^x 1 = 0$ correct up to four decimal places using Iterative method. (a = 0.4) [05]
- Q-4 If $y = 2x^3 x^2 + 3x + 1$, calculate the value of y corresponding to $x = 0, 1, 2, \dots$
- (a) 3, 4, 5 and form the table of differences.

b) Given the table of values as

		.000 00			
X	2.5	3.0	3.5	4.0	4.5
<u>y(x)</u>	9.75	12.45	15.70	19.52	23.75
Find y(2.	35).			10,02	23.73

[05]

[05]

[05]

OR

- Q-4 If Lx represents the numbers living at age x in a life table interpolate, by
- using Newton's method find Lx for x = 49, where

[05]

(c) L20 = 512, L30 = 439, L40 = 346, L50 = 243.

Using Newton's divided difference formula obtain y(2), when y(1) = -3, y(3) = 9, y(4) = 30 and y(6) = 132.

[05]

Q-5 Solve the following system of equations using Gauss-Seidel method.

(a)
$$5x_1 + 2x_2 + x_3 = 12$$
$$x_1 + 4x_2 + 2x_3 = 15$$

[05]

$$x_1 + 2x_2 + 5x_3 = 20$$

(b) Write the comparison between direct and iterative methods for solution of system of linear equations.

[05]

OR

0-5 Given the following table

Q 3	x 0.50 0.75			1.00	1.25	1.50
(c)	v = f(x)	0.13	0.42	1.00	1.95	2.35

[10]

Find f'(0.75) and f'(0.85).

Q.6 Calculate three yearly moving averages for the following data

(a)

YEAR	1950	1951	1952	1953	1954	1955	1956	1957	1958	1959	1960	[06]
,					253					265	262	-

(b) Obtain seasonal indices using simple average method.

S	s using simple average meanous								
ļ	Year	rear Q-1		Q-III	Q-IV				
	1974	30	81	62	119				
	1975	33	104	86	171				
	1976	42	153	99	221				
	1977	56	172	129	235				

[04]

OR

Q.6 Calculate seasonal indices by 'ratio to moving average method' for the

(c) following data.

ing data.				
YEAR	I Quarter	II Quarter	III Quarter	IV Quarter
1971	68	61	61	63
1972	65	58	66	61
1072	68	63	63	67
1972 1973	65	63	63	67

[06]

(d) Explain Exponential smoothing model in forecasting.

[04]

.