SARDAR PATEL UNIVERSITY

BCA SEM-I EXAMINATION (NC-2010batch)

TUESDAY, 20TH NOVEMBER, 2018

2:00 pm to 4:00 pm

USO	1FBCA02:	MATHEMATICS-I		Total Marks: 70					
Q:1	Choose the correct option in the following, mention the correct option with the answers in the answer book.								
(1)	Dot product of $u = (1, 2, 3), v = (0, -1, 4)$ is								
•	(a) 14	(b) (0, -2, 12)	(c) (1, 1, 7)	(d) 10					
(2)	The identity for a group (Z, +) is:								
	(a)1	(b) 0	(c) –1	(d) e					
(3)	The number of elements in the power set of a set $\{1, 2, -1, 3\}$ are:								
	(a) 0	(b) 8	(c) 16	(d) 32					
(4)	Let A = {1,3,5,7,}, then A closed under:								
,	(a) multiplic	on (d) subtraction							
(5)	Geometric mean of x, y, z is given by:								
	(a) \sqrt{xyz}	XyZ (d) none							
(6)	Every monoid are:								
	(a)group	(b) ring	(c) semigroup	(d) none	n				
(7)	If $f(x) = 2x + 3$, then $f^2(0) =$								
	(a) 0	(b) 9	(c) 13	(d) 4x +9					
(8)	A Square matrix A is said to be skew symmetric if								
	(a) A ≠ A ^T	(b) $A = -A^T$	(c) $A = A^T$	(d) None					
(9)	Median of 2	2, 3, 7, 9, 6, 4, 8 is							
	(a) 7	(b) 6	(c) 4	(d) 9					
10)	The range of the function $f: R \to R$ defined as $f(x) = 5x^2$ is:								
	(a) R	(b) N	(c) R ⁺	(d) Z					
Q:2	Answer the	following in short (Atte	mpt any Ten).	,	[20]				

(1) Find the power set of a set $A = \{1, 2, 3\}$.

(2) Find dual of the following:

(i)
$$(A \cap B \cup C)^c = (A \cup C)^c \cup (A \cup B)^c$$

(ii) $(A \cup U) \cap (\phi \cup A^c) = A$.

- (3) Find Arithmetic mean of the following data 50, 52, 54, 56, 58, 60, 62.
- (4) In (Z_{10}, \times_{10}) , find 3⁻¹, 5⁻¹, if exists.
- (5) If S is a nonempty set with the operation a*b = a. Is the operation:(i) associative?, (ii) commutative?.
- (6) For a, b rational number, define a*b = ab/3. Find identity element for given binary operation.
- (7) Define Geometric mean.
- (8) Using determinants solve the following simultaneous equations 3x 2y = 5, 5x + 4y = 1.

(9) If
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 4 & 5 & 3 \\ 0 & 2 & 5 \end{bmatrix}$$
 then find $A + A^{T}$ and $A - A^{T}$.

- (10) If f(x) = x + 3 and $g(x) = x^2 + 1$ then find $(f \circ g)(x)$.
- (11) Find Median height(in cm) of seven students for the following data 150, 165, 154, 156, 159, 145, 157
- (12) Find x, y, z if (2x, 3, y) = (4, x + z, 2z).

Q:3

(a) Define a function F as F (a, b) = 0

if a < b

[5]

= F(a-b, b) + 1 if $b \le a$.

Find F (4,3) and F(14,3).

Define invertible function and hence find inverse of the function $f(x) = \frac{7x-3}{5x-2}$, [5] $x \neq \frac{2}{5}$.

Q:3

(c) Prove that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$. [5]

OR

(d) By using algebra of sets , prove that $(\phi \cup A) \cap (B \cup A) = A$. [5]

- Q:4(a) For a,b rational number, define a*b = a + b + ab. Is (Q,*) commutative? Show that [5] (Q,*) is Monoid and find its inverse if it exist.
 - (b) If G = {1,2,3,4,5,6} then prove that G is a group under multiplication modulo 7. Is it finite group?

Q:4 OR

- (c) Define a group homomorphism. Show that $f: G \rightarrow G'$ defined by $f(a) = 2^a$ is a homomorphism where G is a group of real numbers under addition and G' is a group of positive real numbers under multiplication.
- (d) For $a,b \in Q$ (rational numbers), define a*b = ab/3. [5]
 - (i) Is (Q,*) Semigroup? (ii) Is (Q,*) Monoid?
 - (iii) Find the inverses of elements of (Q,*), if it exist.

Q:5

(a) If
$$A = \begin{bmatrix} 2 & 4 \\ 3 & 0 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 1 & 5 \end{bmatrix}$ then prove that $(AB)' = B'A'$. [5]

(b) If
$$u = (1, 4, 3)$$
, $v = (-5, -2, 5)$, then evaluate: $||u||$, $||v||$, $||u+v||$, $||u-3v||$. [5]

Q:5 OR

(c) If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 0 & 9 \\ 5 & -7 & 11 \end{bmatrix}$$
 then find the determinant of A . [5]

- (d) Define: equality of vectors, norm of a vector. Find x and y if x(2, 1) + y(1, 6) = (7,1) [5]
- Q:6 Find Arithmetic Mean, Medain and Mode of the following distribution: [10]

Marks .	0-10	10-20	20-30	30-40	40-50
Number of students	2	8	20	16	4

OR

Q:6 Following data is regarding ages of 40 persons who attended computer seminar. [10]

18.2, 24.6, 22.4, 34.2, 37.5, 42.3, 46.7, 43.4, 51.1, 61.2, 59.7, 29.4, 20.4, 16.5, 25.9, 45.0, 15.9, 51.7, 19.9, 25.0, 32.4, 16.2, 18.0, 30.7, 44.7, 55.6, 48.0, 33.7, 27.2, 40.5, 28.5, 35.5, 64.5, 41.0, 39.5, 56.7, 27.5, 45.6, 42.5, 16.8.

Represent the data in frequency table such that one of the class 15-21. Also obtain mean Harmonic mean of the distribution.

. . , .