SARDAR PATEL UNIVERSITY SEAT No.

BCA SEM-I EXAMINATION

(NC: OLD Course)

MONDAY, 22nd OCTOBER, 2018

		10:00 am to	12:00 noon			
US01FBCA02: MATHEMATICS-I				Total Marks: 70		
Q:1		option in the follo	wing, mention the co	orrect option with [[0]	
(1)	Geometric mean o	f x, y, z is given b	У			
	(a) \sqrt{xyz}	(b) $\sqrt{x+y+z}$	(c) ³ √ <i>xyz</i>	(d) none		
(2)	The set $\{x \in \mathbb{R}: 0 < a\}$	(b) infinite	` , , ,	(d) none	•	
(3)	The number of ele		er set of a set {2,3,4	(d) 32		
(4)	(a) 0 Let $A = \{0,1\}$, the	(b) 8 n A closed under	(c) 16	(4) 32		
	(a) multiplication	(b) addition	(c) division	(d) subtraction		
(5)	The set {N,+} is (a) group	(b) ring	(c) monoid	(d) semigroup		
(6)	A Square matrix	A is said to be ske	w symmetric if	(d) None	•	
			(c) $A = A^T$	(d) None		
(7)		:				
	(a) 14	(b) (0, -2, 12)	(c) (1, 1, 7)	(d) 10		
(8)	Median of 2, 3,	7, 9, 6, 4, 8 is				
	(a) 7	(b) 6	(c) 4	(d) 9	-	
(9)) If $f(x) = 2x - 3$,	then $f^2(2) =$				
	(a) 1	(b) 1	(c) 0	(d) · ~ ~ ~ ~ ~ ~ ~		
(10)	Every monoid ar	re		e e e e e e e e e e e e e e e e e e e		
	(a)group	(b) ring	(c) semigrou	ip (d) none	ranz	
Q:	2 Attempt any ter	in short.			[20]	
(1	given binary operation.					
(2		ght(in cm) of seve 156, 159, 145, 15	n students for the fo 7	llowing data	_	

(P.T.O.)

(3	(3) Define Geometric mean.					
(4						
(6	 If S is a nonempty set with the operation a*b = a. Is the operation: (i) associative?, (ii) commutative?. If A = \$\begin{bmatrix} 1 & 0 & 2 \ 4 & 5 & -1 \ -1 & 2 & 3 \end{bmatrix}\$ then find A + A^T and A - A^T. If f(x) = x + 5 and g(x) = 3x + 2 then find fog. Using determinants solve the following simultaneous equations 					
(10) (11)	(i) $(A \cap B \cup C)^c = (A \cup C)^c \cup (A \cup B)^c$ (ii) $(A \cup U) \cap (\phi \cup A^c)$ Find Arithmetic mean of the following data of marks of 10 students 48, 65, 43, 31, 57, 37, 60, 59, 49 and 77.) = A.				
(12)	Find x, y, z if $(2x, 3, y) = (4, x + z, 2z)$.	*				
Q:3 (a) (b)	By using algebra of sets , prove that $(\phi \cup A) \cap (B \cup A) = A$. Define a function F as F (a, b) = 0 if a < b. $= F(a-b,b) + 1 \text{ if } b \le a.$ Find F (4.3) and F(14.3)	[5] [5]				
Q:3	OR	English of				
(c)	Prove that $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$.	[5]				
(d) Q:4	$f(x) = \frac{7x - 3}{5x - 2}, x \neq \frac{2}{5}.$	[5]				
(a)		[5]				
(b)	For a,b rational number, define $a*b = a + b + ab$. Is $(Q,*)$ commutative? [5] Show that $(Q,*)$ is Monoid and find its inverse if it exist.					
Q:4						
	Define a group homomorphism. Show that $f: G \rightarrow G'$ defined by $f(a) = 2$ a homomorphism where G is a group of real numbers under addition an G' is a group of positive real numbers under multiplication.	³ is [5] d				

- (d) For $a,b \in Q$ (rational numbers), define a*b = ab/3.
 - (i) Is (Q,*) Semigroup? (ii) Is (Q,*) Monoid?
 - (iii) Find the inverses of elements of (Q,*), if it exist.

Q:5

(a) If $A = \begin{bmatrix} 1 & -2 & 3 \\ 6 & 0 & 9 \\ 5 & -7 & 11 \end{bmatrix}$ then find the determinant of A. [5]

[5]

(b) If u = (1, 4, 3), v = (-5, -2, 5), then evaluate: ||u||, ||v||, ||u+v||, ||u-3v||. [5]

Q:5

OR

- (c) If $A = \begin{bmatrix} 2 & 4 \\ 3 & 0 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 2 & 3 \\ 7 & 1 & 5 \end{bmatrix}$ then prove that (AB)' = B'A'. [5]
- (d) Define: equality of vectors, norm of a vector. Find x and y if (2, 1) + y (1, 6) = (7,1) [5]
- **Q:6** Find Arithmetic Mean, Medain and Mode of the following distribution: [10]
- (a) Marks 0-10 10-20 20-30 30-40 40-50 Number of 2 8 20 16 4

OR

- Q:6 The marks of 40 students who attended a workshop competitive exam [10] are as follows:
 - 27
 32
 57
 34
 36
 48
 49
 31
 51
 34

 49
 45
 51
 29
 47
 36
 50
 46
 30
 46

 35
 35
 48
 41
 53
 36
 37
 47
 47
 30

 43
 45
 42
 30
 46
 50
 28
 44
 48
 49

Classify the above data in exclusive classes & one of them being 40 – 44. Also obtain mean of the distribution.