	Lameria .	Ç.
	\sim	

8173	A DO	16. Y	
	ΑI	No	

No. of Printed Pages : 2 SARDAR PATEL UNIVERSITY

[14|A4]

External Examination

F.Y.BCA (Sem-1) NC [old Course]
US01EBCA01: Digital Computer Electronics
Time: 10.00 am - 12.00 noon

Time: 10,00 an	1 – 12.00 noon	Marks:	70	
on from the followin	ng questions.		10	
	ut signals. All inputs	must be high to get		
B. NOT	C. NOR	D. NAND		
theorem says that a	NOR gate is equivale	ent to a		
B. bubbled NOR	C. bubbled AND	D. AND bubbled		
gate is use for	comparing bits in w	ord.		
B AND	CNOR	D XNOR		
eliminates	variable.			
B. two	C. three	D Four		
cuit that performs the	arithmetic addition of t	hree bits is called		
B Half adder	C Binary adder	D Decoder		
In half adder XOR gate's output is				
B. sum	C. reminder	D. none		
ter, the arrival of the	first rising clock edg	e sets the		
B. right	C. up	D. down		
ucing words with 1 h	igh bit, which shifts	position per		
B. two	C. three	D. none		
emory element that st	tores a binary digit.			
B. Decoder	C. Multiplexer	D. Flip flop		
ircuit with one or mo	re input signals but o	nly output		
B. one	C. three	D. four		
Answer the following questions. (ATTEMPT ANY TEN)				
, NOR gate.				
ve low.				
or : ABC +A'B'C'				
,	e low.	e low.	e low.	

		4	Explain product of sum.	
		5	Describe pair in k-map	
		6	Define comparator in short.	
		7	Draw the circuit diagram of Half Adder.	
		8	Describe binary subtractor in short.	
		9	Define Multiplexer. What is the use it?	
		10	Define: register and shift register. What are the types of shift register?	
		11	Explain D flip-flop.	
		12	Draw the circuit diagram of Controlled Buffer Register.	
	Q-3	A	Write note on: De'Morgan's first theorem.	5
		В	Explain AND, NOT gates.	5
			OR	
	Q-3	A	Write note on: De'Morgan's second theorem.	5
		В	Explain Associative low.	5
	Q-4	A	Explain 8x3 line Encoder in detail.	5
		В	What is k-map? Explain pair with example.	5
		-	OR	
	Q-4	A	Explain 3x8 line Decoder in detail.	5
٠		В	Explain comparator.	5
	Q-5	A	Explain Half adder in detail.	4
		В	Explain 4x1 Multiplexer.	6
			OR	
	Q-5	A	Explain Full adder in detail.	4
		В	Explain 4 bit Binary Subtractor with circuit diagram.	6
	Q-6		Explain Shift Left and Shift Right Registers in detail.	10
			OR	
	Q-6	Σ	Explain Ring Counters.	10

