Sardar Patel University F.Y.BCA (SEM-1)(CBCS) EXAMINATION 2019

		9 ≥ :00 p.m. to∂4.00 p.m.	
		US01EBCA01: Degital Computer Electronics	
13/11/	2019.u	Maximum Marks: 70	
Note:	- Ansv	wers of all the questions (including multiple choice questions) show	uld
he wr	itten it	n the provided answer book only.	
Q.1		ple choice questions:	[10]
Ų.I	1.	An invert gate is also called a gate.	
	1.	A. AND B. OR C. NAND D. NOT.	
	2.	The NOR gate has two or more input signals. If all inputs are,	
		the output is high.	
		A. Low B. High C. Both A and B D. None.	
	3.	In k-map, pair eliminates variable.	
		A. One B. Two C. Three D. Four.	
	4.	A+A'B+A'B'=?	
		A. I B. O C. A D. A'	
	5.	A is a combinational circuit that converts binary information	
		from the n coded inputs to a maximum of 2" unique outputs.	
		A Half Adder B. Decoder C. Encoder D. Comparator.	
	6.	A gate is a logic circuit with one or more input signals but only	
		output signal.	
		A One B Two C. Three D. None.	
	7.	In Comparator, gate is use for comparing bits in word.	
		A, XOR B, AND C, NOR D, XNOR.	
	8.	In D flip-flop, when CLK is hign then output is	
		A. High B. Low C. Same as input D. None.	
	9.	In D flip-flop, when CLK is low then input is	
	, ,	A. High B. Low C. Don't Care D. None.	
	10.	A multiplayer also called a	
	101	A. Data Multiplier B. Data Selector C. Data Remover D. None.	
	•	1	
			[20]
Q.2	Atte	mpt any Ten out of Twelve.	[20]
	1.	Define Gate.	
	2.	Explain XNOR, OR gate	•
	3.	Write truth table for: A'B+B'C	
	4.	Simplify Boolean expression and draw circuit. AB'+C'D+AB+CD	
	5.	Describe Octet, Pair and Quads in k-map.	
	6.	Explain 2 Variable K Map .	
	7.	Define Encoder in short.	
	8.	Simplify using K-Map F(A,B,C)=E(2,3,5)	
	9.	Describe Half Adder in short.	
	10.	Describe Full Adder in short.	
	11.	Define Controlled Buffer register.	_
	12.	Draw Circuit for D flip-flop.	T-0-)
			, ~/

Q.3	(a)	Explain Truth table with appropriate example.	[5]
	(b)	Prove that ABC'+ABC=AB using truth table.	[5]
		OR	[-/]
Q.3	(a)	Explain XOR, OR, NAND gate	[5]
	(b)	Simplify this Boolean expression and draw circuit: ABC'+ABC+A'BC	[5]
Q.4	(a)	Simplify this using K-Map $F(A,B,C,D)=\sum (1,2,3,4,5,6,8,10,11,12,13,15)$	[5]
	(b)	Explain 8x3 Line Encoder in detail.	[5]
		OR	101
Q.4	(a)	Simplify this using K-Map $F(A,B,C,D)=\sum (2,4,5,6,8,10,15)$	[5]
	(b)	Explain Comparator with example.	[5]
Q.5	(a)	Explain Half Adder in detail.	[5]
	(b)	Explain Binary Adder-Sub tractor in detail.	[5]
		OR	1]
Q.5	(a)	Explain Full Adder in detail.	[5]
	(b)	Explain 4x1 Multiplexer in detail.	[5]
Q.6	(a)	Explain D flip-flop in detail.	[10]
		OR	
Q.6	(a)	Explain Shift left and Shift right register.	[10]

