TO LOTE	7- Y
In t	No.
	1 X V 4

No. of Printed Pages : 4

SARDAR PATEL UNIVERSITY

TYBCA Examination October/November - 2018 - V SEM

 .		O202FBCA01	: Operations Research		
Date: 22/10/2018, Monday		lay Time	: 02:00 to 05:00 PM	Total Marks: 70	
Q.	1 Multiple choice qu	uestions:			•
			on of "	nethods to arrive at the	[10]
	optimal solutions	to the problems."	· · · · · · · · · · · · · · · · · · ·	rections to arrive at the	
	[a] economical		[c] a and b both	[d] artistic	
2	. In graphical repres	sentation the bound	led region is known as	region	
	(a) Solution		[b] feasible soluti		
	[c] basic solution		[d] optimal		
3	. The linear function	of variables which	is to be maximized or	minimized is called	:
	[a] constraints		[b] basic requirer	nents	
	[c] objective functi	on	[d] none of them		
4.	The var	iable is added to th	e constraint of less tha	n equal to type.	
	[a] slack	[b] Surplus	[c] artificial	[d] basic	
5.	[a] Not more than t	nod for solving of Li three	PP number of variables [b] at least three [d] none of them	can be	
6.	The Penalty in VAN	∕l represents differ€	ence between	costs of respective	
	[a] Two Largest		(h) amallast to		
	[c] largest and small	lest	[b] smallest two		
	g		[d] none of them		
7.	If number of source then it is called	es is not equal to no	umber of destination i	n Assignment problem	
			[c] unsymmetric	[d] unbalanced	
8.	The method L	used to obtain optim	num solution of travelli	ing colors Li	
	[a] Simplex	[b]Hungarian	[c] dominance		
	•	[~]··wiiBariaji	[c] dominance	[d] graphical	
9.	Activity which starts	only after finishing	other activity is called		
	[a] dummy	[b]Predecessor	[c] successor	[d] none of them	
			[] - ~ *********************************	fol notic of fuew	
10.	event represon	ts haginning of	a Ali		
·	[a] burst	(b) merge	e than one activities.		
	<u> </u>	[~] mer Re	[c] dummy	[d] none of them	

	1.	Define i] Unbounded solution ii] Optimum solution						
	2.	2. Give any four models of operations research.						
•	3.	Define feasible solution.						
	4.	Write the standard form of LPP for the following LPP:						
		Maximize $Z = 13x_1 + 25x_2$ Subject to $21x_1 + 3x_2 \le 40$, $5x_1 + 2x_2 \le 7$, $x_1, x_2 \ge 0$						
	5.	Define artificial variables.						
	6.	What is the condition for optimality in simplex table ?						
•	7.	What is non degenerate solution in transportation problem?						
	8.	What is the Assignment problem?						
	9.	What is travelling salesman problem?						
	10.	Define two types of events used in network analysis.						
	11.	. What is successor activity?						
	12.	In brief explain problem of sequencing.						
Q.3(A) Q.3(B)	A carp is done on ma There B. Assi proble	enter produces two products chairs and tables. Processing of these products on two machines A and B. Chair requires 2 hours on machine A and 6 hours chine B. A table requires 5 hours on machine A and 3 hours on machine B. are 22 hours of time per day available on machine A and 35 hours on machine uming that the profit per chair is Rs. 10 and Rs. 15 for table. Formulate the m as LPP in order to determine the number of chairs and tables to be ced so as to maximize the profit. OR	[5] [5]					
Q.3(A)		he different scope of operation research.	[5]					
Q.3(B)	Maxim Subjec	aphical method to solve the following linear programming problem. aize $Z = 2x + 10$ y It to the constraints $y \le 16$, $y \ge 0$	[5]					
Q.4(A) Q.4(B)	Solve t	entiate Slack and Surplus Variable. The following problem using simplex method. This Z=12X1 + 16X2 This To: 10X1+20X2<=120 8X1+8X2<=80 X1>=0, X2>=0	[2] [8]					
		•						

Q.2 Write short answer of any ten

[20]

Q.4(A) What is the condition for entering variable in simplex table?

[2]

Q.4(B) Solve the following problem using Big-M Method.

[8]

(1) Maximize $Z = 3x_1 - x_2$

Subject to $2x_1 + x_2 \ge 2$, $x_1 + 3x_2 \le 3$, $x_1, x_2 \ge 0$

- Q.5(A) Give the algorithm of VAM to obtain basic feasible initial solution to transportation
 - [4]
- Q.5(B) Solve the following Assignment problem using Hungarian method.

				in asing tin	ugai
<u></u>	A	В	С	D	
1	8	10	17	9	
	3	8	5	6	
	10	12	11	9	
١٧	6	13	9	7	
	•				

OR

Q.5(A) Write the steps for solving a A.P. by Hungarian method.

- 4
- Q.5(B) Solve the following transportation problem using Least-Cost Method.

ـ ء	
16	ı

R1	DO		THE COST WIELL	100.
	KZ	R3	R4	Supply
8	9	11	16	
12	7	E .	- +	50
14	10		8	80
	10	6	7	120
90	70	40	50	
	R1 8 12 14 90	R1 R2 8 9 12 7 14 10	R1 R2 R3 8 9 11 12 7 5 14 10 6	8 9 11 16 12 7 5 8 14 10 6 7

- Q.6(A) Write down the procedure for solving problem of sequencing with two machines.
- [4]
- Q.6(B) Find the critical path and calculate the Total float and Free float for the following PERT diagram.
- [6]

OR

Q.6(A) State the rules for drawing network diagram.

[4] [6]

Q.6(B) In a machine shop 6 different products are being manufactured each requiring time on two different machines A and B are given in the table below:

Product	1	2	3	4	5	6
Machine-A	30	120	50	20	90	110
Machine B	80	100	90	60	30	10

Find an optimal sequence of processing of different product in order to minimize the total manufctured time for all product. Find total ideal time for two machines and elapsed time.

