Choose the correct alternative from the following:
1 Operation Research was originated in \qquad -.
(a) World war - I
(b) World war - II
(c) kargil war
(d) none

2 In graphical method the restriction on number of variables is \qquad d
(a) more then 3
(b) 3
(c) 2
(d) none

3 In the simplex method the variables leaves the basis if the ratio is \qquad
(d) none
(a) maximum
(b) minimum
(c) 0

4 If all the constraint inequalities are of " \leq " type, \qquad method is used to solve the lpp.
(a) Simplex method
(b)MODI method
(c) Hungarian method
(d) none

5 Transportation problem is a particular case of \qquad -
(a) 1 pp
(b)assignment problem
(c) network analysis
(d) none

6 The \qquad variable is added to the constraint of less than equal to type.
(a) surplus
(b) slack
(c) artificial
(d) none

7 From the following methods \qquad is a method to obtain initial solution to the given TP.
(a) simplex
(b) Hungarian
(c) North-west corner
(d) none

8 Number of basic allocation in any row or column in assignment problem can be \qquad
ia) exactly one
(b) at xnost one
(c) at least one
(d) none

9 In sequencing if smallest time for a job belongs to machine - 1 then that job has to place ___ of the sequence.
(a) in the middle
(b) at the end
(c) in the starting
(d) none

10 Burst and merge are types of \qquad in networking.
(a)activity
(b) event
(c) arrows
(d) none

Q2 Aitempt any ten from the following:
1 Define operation research.
2 Deline: (a) solution, (b) unbounded solution.
3 Define lpp in the mathematical form.
4 Deline: (a) slack variable, (b) surplus variable.
5. When is Big- M method useful?

6 What are the conditions for entering variable in the simplex table?
7 What is transportation problem?
8 What do you mean by balanced transportation problem?
9 What is travelling salesman problem?
10 State Bellman's principle of optimality in dynamic programming.
11 Write down any two assumptions used for solving sequeucing problem.
12 Define: (a) dummy activity, (b) total float.

Q3 A Give the limitations of linear programming problem.
B A firm manufactures two types of products A and B and sells them at a profit of Rs. 200 on type A and Rs. 300 on the type B. Each product is processed on two machines G and H. Type A requires 1 minutes of processing time on G and 2 minutes on H; type B requires 1 minutes on G and 1 minutes on H. The machine G is available for not more than 6 hours, while machine H is available for 10 hours during any working day. Formulate this as a lpp.

OR

Q3 A Discuss scopes of OR in brief.
B Solve the following lpp by graphical method:
$\operatorname{Max} Z=2 x+5 y$
Subject to,

$$
\begin{aligned}
x & \leq 4 \\
y & \leq 3 \\
x+2 y & \leq 8
\end{aligned}
$$

$x, y \geq 0$
Q4 A Write the algorithm of simplex method.
B Solve the following lpp by simplex method:
$\operatorname{Max} Z=40 \mathrm{x}+35 \mathrm{y}$
Subject to

- $2 x+3 y \leq 60$

$$
4 x+3 y \leq 96
$$

$\mathrm{x}, \mathrm{y} \geq 0$

OR

Q4 A Write the algorithm of $\mathrm{Big}-\mathrm{M}$ method.
B Solve the following by Big -M method:
$\operatorname{Min} Z=60 x+80 y$
subject to

$$
\begin{aligned}
& 20 x+30 y \geq 900 \\
& 40 x+30 y \geq 1200
\end{aligned}
$$

$x, y \geq 0$
Q5 A Give the algorithm of North-west corner method to obtain the initial basic feasible [04] solution to the transportation problem.
B Obtain the initial basic feasible solution by lowest cost entry method and hence find the [06] optimal solution of the following TP.

sources	destinations				
	D1	D2	D3	D4	supply
S1	1	2	1	4	30
S2	3	3	2	1	50
S3	4	2	5	9	20
demand	20	40	30	10	

OR

- Q5 - Discuss the assignment problem and give its mathematical form.

3 Solve the following assignment problem:

Jobs \rightarrow workers \downarrow	A	B	C	D
W1	45	40	51	67
W2	55	40	61	53
W3	49	52	48	64
W4	41	45	60	55

Q6 A For the following:
Find the job sequence, total elapsed time and idle time for both machines M1 and M2.

	Processing Time For Jobs				
Machines	A	B	C	D	E
M1	4	13	7	12	6
M2	3	15	5	6	11

OR

Q6 A Draw the network diagram for the following:

activity	$1-2$	$1-3$	$1-4$	$2-5$	$3-6$	$3-7$	$4-6$	$5-8$	$6-9$	$7-8$	$8-9$
Time(months)	2	2	1	4	8	5	3	1	5	4	3

And determine:
(a)the critical path,
(b)earliest start and earliest finish time
(c)latest start and finish time
(d)total floats, free float

