(d) none of them

(b) Predecessor

(d) none of them

(b) merge event

(d) none of them

P.T.O

(c) both of them

(a) dummy

10. _

(c) successor,

(a) burst event

(c) dummy activity

9. Activity which starts only after finishing other activity is called

is indicated by dotted arrow.

Q-2 Give answers of following Questions.(Any Ten)

[20]

- 1. Define Operation research.
- 2. Give any four models of operations research.
- 3. Define i] Unbounded solution ii] Optimum solution
- 4. Define surplus variables.
- 5. Write the standard form of LPP for the following LPP:

Maximize
$$Z = 13x_1 + 25x_2$$

Subject to
$$21x_1 + 3x_2 \le 40$$
, $5x_1 + 2x_2 \le 7$, $x_1, x_2 \ge 0$

- 6. What is the condition for entering variable in simplex table?
- 7. What is travelling salesman problem?
- 8. Write mathematical form of transportation problem.
- 9. Give mathematical form of assignment problem.
- 10. State any two rules for drawing network diagram.
- 11. Define: Merge Event, Burst Event.
- 12. What is Dynamic Programming Problem?

Q-3

[A] Note down the applications of operations research.

[05]

[B] A diet for sick person must contain at least 4000 units of vitamins, 50 units of minerals, 1400 units of [05] calories two foods A and B are available at a cost of Rs. 4 and Rs. 3 respectively if one unit of A contains 200 units of vitamins, 1 unit of mineral and 40 calories one unit of food B contain 100 units of vitamins, 2 units of minerals 40 units of calories. Formulate the LPP to maximize cost.

OR

Q-3

[A] Explain in detail different scope of operation research.

[05]

[B] Find a solution for the following LP problem using graphical method.

[05]

 $Maximize Z = 15x_1 + 10x_2$

Subject to $4x_1 + 6x_2 \le 360$

$$3x_1 \leq 180$$

$$5x_2 \le 200$$

And
$$x_1, x_2 \ge 0$$

Q-4

[A] Define slack and surplus variables with example.

[04]

[B] Solve the below LPP using simplex method.

$$Max Z = 3x_1 + 5x_2$$

Subject to
$$x_1 + x_2 \le 4$$
,

$$3x_1 + 2x_2 \le 18$$

$$X_1, x_2 \ge 0$$

OR

[A] Differentiate the unbound solution and optimum solution.

[04]

[B] Solve the below LPP using Big-M method.

Min
$$Z = 5x_1 + 3x_2$$

Subject to $2x_1 + 4x_2 \le 12$,

$$2x_1 + 2x_2 = 10$$
,

$$5x_1 + 2x_2 \ge 10$$

$$X_1, x_2 \ge 0$$

Q-5 *

[A] Write the steps for solving the transportation problem using Least Cost method.

[05]

[B] Solve the following assignment problem so as to minimize the time (in days) required completing the [05] entire task.

	1	2	3	4
A	22	30	21	15
В	18	33	9	31
С	44	25	24	21
D	23	30	28	14

OR

Q-5

[A] Write the steps for solving Assignment Problem by Hungarian method.

[04]

[B] Obtain the optimal solution to Transportation Problem using northwest corner method.

[06]

	A	В	C	D	Supply
\mathbf{F}_1	19	30	50	10	7
\mathbf{F}_2	70	30	40	60	9
\mathbf{F}_3	40	8	70	20	18
Demand	5	8	7	14	

Q-6

[A] State the rules for drawing network diagram.

[04]

A projet has the following time schedule:

Activity	Time	Activity	Time	Activity	Time	
	In month		In month		In month	
1-2	2	3-6	8	6-9	5	
1-3	2	3-7	5	7-8	4	
1-4	1	4-6	3	8-9	3	
2-5	4	5-8	1 .			

Construct PERT network and compute total float for each activity. Find Critical path with its duration.

OR

Q-6

[A] A project has the following time schedule:

Draw the arrow network of the project. Determine the critical path.

[05]

Jobs Duration in days		Jobs	Duration in days	Jobs	Duration in days	
1-2	2	3-5	5	6-10	4	
2-3	7	4-6	3	7-9	4	
2-4	3	5-8	5	8-9	1	
3-4	3	6-7	8	9-10	7	

[B] In a methine shop 8 different products are being manufactured each requiring time on two different [05] machines A and B are given in the table below:

Product	1	2	3	4	5	6	7	8
Machine-A	30	45	15	20	80	120	65	10
Macline B	20	30	50	35	35	40	50	20

Find anoptimal sequence of processing of different product in order to minimize the total manufctured time for all product. Find total ideal time for two machines and elapsed time.

