No. of printed pages: 2

## Sardar Patel University, Vallabh Vadhyanagar **External Examination 2019**

F.Y.B.B.A. (Gen) - SEM - II

UM02DBBA22 - Business Mathematics - II

Date: 30-03-2019

Time: 02:00 PM TO 04:00 PM

Total Marks: 60

Day: Saturday

Q-1 If  $y = \frac{1+t}{1-t}$  &  $x=t^2+1$  then find  $\frac{dy}{dx}$ . [05]

(b) Write the rules of differentiation. [05]

If  $f(x) = x^3 - 3x + 4$  then find the point at which f(x) is minimum and maximum. (c)

[05]

Q-1 [05] (a) If  $y = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)\left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)\left(x + \frac{1}{x}\right)$  then find  $\frac{dy}{dx}$ .

(b)

[05]

Find  $\frac{dy}{dx}$ , if y =  $(4x^2 + 3x - 4)^6$ If cost function C(x)= $^1/_3$ x $^3$  + x $^2$  – 15x + 2 where x is the number of articles. (c) Find minimum value of C.

[05]

Q-2 (a) If  $nC_4$ :  $nC_3 = 7:4$  then find the value of n. [05]

(b) How many three digited numbers can be formed using the digits 1, 2, 4, 5, 6, 7, 8 only one time?

[05]

How many of them are

(1) more than 500 (2) even numbers (3) less than 700

Evaluate: (1)  $9P_2 \times 6P_3$  (2)  $10P_4 \div 2C_0$  (3)  $50C_{48}$ (c)

[05]

OR

Q-2 (a) Find n if  $2nP_3 = 14$ ,  $nP_4$ 

[05]

How many words can be formed using all the letters of the word "NIRAV"? (b) Out of them how many start with (1) Vowel (2) start and end with vowel

[05]

Find the number of committees of 5 members from 7 boys and 4 girls can be (c) formed such that committee contains at least one girl.

[05]

Q-3 (a) Obtain the equation of a line joining two points  $A(x_1, y_1)$  and  $B(x_2, y_2)$ .

[05]

(b) Find x if d{ (x, -4), (-8, 2) } = 10

[05]

Find the equation of a line passing through the point (2, 3) and making equal (c) intercepts on the co-ordinate axes.

[05]

(P.TU)

- Find the equation of a line passing through (-1, 2) and (5, -3) also find slope Q-3(a) [05] and both intercepts.

  - Obtain the equation of a line having slope m and making intercept 'C' on y-(b)
- [05]
- (c) Find the equation of a line passing through the point of intersection of the lines x - 2y + 5 = 0 and 3x + y - 4 = 0 and parallel to the line y = 2x + 3.
- [05]
- Solve the following linear programming problem by graphical method: Q-4 (a) Max Z=3x+5y

[80]

Such That  $3x + 2y \le 18$ 

 $x \le 4$ ,  $y \le 6$ 

x, y ≥ 0

Also write the meaning and uses of linear programming problem.

(b) Solve the following transportation problem by Vogel's approximation method.

[07]

|        | D1 | D2 | D3 | D4 | Demand |
|--------|----|----|----|----|--------|
| 01     | 1  | 2  | 1  | 4  | 30     |
| O2     | 3  | 3  | 2  | 1  | 50     |
| О3     | 4  | 2  | 5  | 9  | 20     |
| Supply | 20 | 40 | 30 | 10 |        |

OR

Solve the following transportation problem by using (1) NWCM (2)LCM (a)

[80]

|        | D1 | D2 | D3 | D4 | Demand |
|--------|----|----|----|----|--------|
| 01     | 6  | 4  | 1  | 5  | 14     |
| O2     | 8  | 9  | 2  | 7  | 16     |
| O3     | 4  | 3  | 6  | 2  | 05     |
| Supply | 6  | 10 | 15 | 4  |        |

Solve the following linear programming problem by using graphical method: [07] (b) Max Z= 6x + 7y

Such That

 $4x + 2y \le 60$ 

 $2x + 4y \le 48$ 

x, y ≥ 0