No. of printed pages: 2

Sardar Patel University, Vallabh Vadhyanagar

External Examination 2019

F.Y.B.B.A. (IB) - SEM - II

UM02CBBB06 - Business Statistics

Date: 30-03-2019 Day: Saturday Time: 02:00 PM TO 04:00 PM

Total Marks: 60

Define statistics and Explain the scope and limitations of it. Q-1 (a)

[07]

[80]

If Median of the following frequency distribution is 44 and the total frequency (b) is 100. Then find the missing frequency and also find mean and mode.

Class	10-20	20-30	30-40	40-50	50-60	60-70	70-80
f	5	12	?	30	?	10	4

OR

Find mean, median and mode of first ten even natural numbers. Q-1 (a)

[07]

(b) Calculate coefficient of variation for the following: [80]

ſ	Х		54	52	53	56	58	52	50	51	49
	у	108	107	105	105	106	107	104	103	104	101

Write the meaning, scope and limitations of operation research. Q-2 (a)

[07]

Solve the following LPP by graphical method: (b)

[80]

Such That
$$3x + 2y \le 18$$

$$x \le 4$$
, $y \le 6$

$$x, y \ge 0$$

OR

Write the applications, assumptions and limitations of Linear Programming Q-2 (a) Problem.

[07]

Solve the following linear programming problem by using graphical method: [80] (b)

Max Z= 6x + 7y

Such That

$$2x + 4y \le 48$$

$$4x + 2y \le 60$$

Q-3 Solve the following transportation problem by using (1) NWCM (2)MM method [10] (a)

	D1	D2	D3	D4	Demand
01	6	4	1	5	14
02	8	9	2	7	16
O3	4	3	6	2	05
Supply	6	10	15	4	

 $(o T \cdot q)$

(b) Solve the following Assignment problem by Hungarian method.

	Α	В	С	D
Р	35	30	41	57
Q	47	32	53	45
R	39	42	38	54
S	31	35	50	45

OR

Q-3 (a) Solve the following Assignment problem to maximize profit.

	Α	В	С	D
P	3	4	11	9
Q	5	7	8	9
R	5	6	6	7
S	4	6	8	8

(b) Solve the following transportation problem by (1) NWCM (2) VAM.

	D1	D2	D3	D4	Demand
01	1	2	1	4	30
O2	3	3	2	1	50
O3	4	2	5	9	20
Supply	20	40	30	10	

Q-4 (a) Define time series and write it uses and state its components.

[07]

[80]

[80]

[80]

[05]

[07]

(b) Find trend by using 3 & 5 yearly cycle for the following data.

1 1110	CIOILA D	, 401115	,	ycurry	Oyoro :	OI CITO	IOHOTE	1119 au	.ce.		
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Sale	112	104	108	121	116	111	133	125	129	139	131

OR

Q-4 (a) Compute seasonal indices for the following data by simple average method. [07]

Year	l .	[]	111	IV .
1999	75	60	54	59
2000	86	65	63	80
2001	90	72	66	85
2002	100	78	72	93

(b) Find trend by using 3 & 4 yearly cycle for the following data.

	JUILU N	y usii		T y cus	I y CyC	IC ICI	CITO IOI	TOKATTIÉ	j uutu.			
Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012
Profit	70	55	50	55	60	65	65	70	80	96	65	55

