SARDAR PATEL UNIVERSITY FYBBA(II SEM) (FT) (CBCS)EXAMINATION

Saturday, 22 February 2014
2.30-4.30 pm
UM02CDBF04 - Business Statistics

TOTAL MARKS: 60
NOTE: Graph paper will be provided on request.
Q1 A Define statistics and write its limitations.
B Construct a frequency distribution by taking the first class as 5-10 for the following: [5]

19	16	22	09	22	12	39	19	14	23
06	24	16	18	07	17	20	25	28	18
10	24	20	21	10	09	18	28	24	20
14	23	25	34	22	05	33	23	26	29
13	36	11	26	11	37	30	13	08	15

C Calculate the mean, median and mode for the following data:

B Find the missing frequencies for the given data of 200 days when mean is 1.46 :

Number of Accidents:	0	1	2	3	4	5
Number of days:	46	$?$	$?$	25	10	5

C Calculate the mean deviation about mean \& coefficient of variation for the following:

x	0	1	2	3	4	5	6	7
$\mathrm{f}:$	6	5	8	15	7	6	5	4

Q2 A Define linear programming problem and discuss limitations of linear programming.
B A company is manufacturing two different types of products X and Y. Each product has to be processed on two machines M1 and M2. Product X requires 2 hours on machines M1 and 1 hour on machines M2, product Y requires 1 hour on machine M1 and 2 hours machine M2. The available capacity of machine M1 is $\mathbf{1 0 4}$ hours and that of machine M2 is 76 hours. The profit per unit for product X is Rs. 6 and that for product Y Rs.11. Formulate the given problem as an Ipp.

C Solve the following LPP graphically:
$\operatorname{Max} Z=3 \mathrm{x}+5 \mathrm{y}$
Subject to

$$
\begin{aligned}
& 5 x+4 y \leq 200 \\
& 3 x+5 y \leq 150 \\
& 5 x+4 y \geq 100 \\
& 8 x+4 y \geq 80
\end{aligned}
$$

$$
\mathbf{x}, \mathrm{y} \geq 0
$$

OR

Q2 A Discuss various scopes of OR.
B Two products A and B are to be manufactured by a firm. Each of these products required processing on two machines M1 and M2. Product A required 4 hrs on machine M1 and 5 hrs on machine M2. Product B required 5 hrs on machine M1 and 2 hrs on machine M2. The available capacity per month is $\mathbf{1 0 0} \mathrm{hrs}$ and 80 hrs for machine M1 and M2. The Profits per unit is Rs. 10 and Rs. 5 on product A and B respectively. Formulate the given problem as an lpp.
C Solve the following LPP graphically:
$\operatorname{Min} \mathrm{Z}=\mathbf{x}+\mathbf{y}$
Subject to $5 \mathrm{x}+10 \mathrm{y} \leq 50$

$$
\begin{aligned}
x+y & \geq 2 \\
y & \leq 4
\end{aligned}
$$

$\mathrm{x}, \mathrm{y} \geq 0$
Q3 A Discuss transportation problem with its general mathematical formation.
B Determine the initial basic feasible solution to the give TP by
(1) North-West Corner Method and (2)Matrix-Minima Method:

	D1	D2	D3	D4	D5	SUPPLY
O1	4	5	7	9	10	20
O2	3	1	2	6	9	30
O3	8	12	15	30	4	17
O4	3	2	10	13	17	13
DEMAND	40	8	7	19	6	

OR
Q3 A Discuss Hungarian's method to solve assignment problem.
B Solve the following assignment problem to maximize the profit:

Men	J1	J2	J3	J4	J5
M1	5	11	10	12	4
M2	2	4	6	3	5
M3	3	12	5	14	6
M4	6	14	4	11	7
M5	7	9	8	12	5

Q4 A What is time series? Discuss analysis of time series.
B Calculate trend values and STF for the following by taking a four yearly moving [5] averages by moving average method:
Year: 19811982198319841985198619871988198919901991199219931994
Profit: $230214222248238228 \quad 2721256$
C Calculate the seasonal indices for the following by simple average method:

Year	Monsoon	Winter	Summer
1997	370	410	$\mathbf{3 3 0}$
1998	$\mathbf{3 8 0}$	390	360
1999	400	410	330
2000	335	467	405
			OR

Q4 A Discuss seasonal variation in detail.
B Calculate trend values and STF for the following by taking a five yearly moving
averages by moving average method:
Year: 19811982198319841985198619871988198919901991199219931994
Profit: $23 \begin{array}{lllllllllllll}230 & 214 & 222 & 248 & 238 & 228 & 272 & 256 & 264 & 284 & 268 & 288 & 296 \\ 280\end{array}$
C Calculate the seasonal indices for the following by simple average method:

Year	Q1	Q2	Q3	Q4
1997	37	41	33	35
1998	37	39	36	$\mathbf{3 6}$
1999	$\mathbf{4 0}$	$\mathbf{4 1}$	33	$\mathbf{3 1}$
2000	33	44	40	$\mathbf{4 0}$
2001	25	36	$\mathbf{4 5}$	$\mathbf{5 0}$

