67 A-79

SARDAR PATEL UNIVERSITY

MARCH - APRIL : 2016 EXAMINATION, BBA (ISM) SEMESTER : II

WEDNESDAY, 06/04/2016

EVENING SESSON TIME: 2.30 PM. TO 4.30 P.M.

SUBJECT CODE: UM02CBBS07 QUNATITATIVE TECHINQUES

TOTAL MARKS: 60

Q-1 (A) Solve the following LPP by graphical method.

[07]

Minimize Z = 10x + 5y

s.t.

$$3x + 5y \le 150$$

$$5x + 4y \ge 100$$

$$x \le 30, y \le 15$$

$$x \ge 0, y \ge 0$$

Q-1 (B) Solve the following LPP by simplex method.

[80]

Maximize
$$Z = x_1 - x_2 + 3x_3$$

s.t.

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - x_2 \le 2$$

$$2x_1 - 2x_2 + 3x_3 \le 0$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0$$

OR

Q-1 (A) Write limitations of LPP.

[03]

Q-1 (B) Solve the following LPP by graphical method.

[06]

Maximize
$$Z = 6x + 7y$$

s.t.

$$2x + 4y \le 48$$

$$4x + 2y \le 60$$

$$x \ge 0, y \ge 0$$

Q-1 (C) Solve the following LPP by simplex method.

[06]

Maximize
$$Z = 3x_1 + 2x_2$$

s.t.

$$2x_1 + x_2 \le 10$$

$$x_1 + 3x_2 < 6$$

$$X_1 \ge 0, x_2 \ge 0$$

Q-2 (A) Solve the following Transportation problem by

[10]

(1) NWCM (2) VAM

	Α	В	C	D	Supply
Р	15	10	17	18	2
Q	16	13	12	13	6
R	12	17	20	11	7
Demand	3	3	4	5	

Q-2 (B) Solve the following Assignment Problem.

[05]

	Р	Q	R	S
Χ	0	7	14	21
Υ	12	17	22	27
Z	12	17	22	27
W	18	22	26	30
				OR

Q-2 (A) Write the mathematical form at assignment problem.

[04]

Q-2 (B) Solve the following Assignment Problem.

[06]

	A	В	С
Р	10	7	8
Q	8	9	7
R	7	12	6
S	10	10	8

Q-2 (C) Solve the following Transportation problem by Matrix minima method.

[05]

	А	В :	С	Supply
Χ	6	8	4	14
Y	4	9	8	12
Z	1	2	6	5
Demand	6	10	15	

Q-3 (A) Write the limitations of Graph Theory.

[04]

Q-3 (B) Solve the following game by using dominance rule.

[06]

Player A	Player B									
	B ₁	B ₂	B_3	B ₄						
A ₁	3	2	4	0						
A ₂	3	4	2	4						
A ₃	4	2	4	0						
A ₄	0	4	0	8						

Q-3 (C) Solve the game given by

[05]

Player A		Player B	
	B ₁	B ₂	B_3
A_1	1	3	1
A ₂	0	-4	-3
A ₃	1	5	-1

OR

Q-3 (A) Explain types of game.

[04]

Q-3 (B) Use graphical method in solving the following game and find the value of the [06] game.

Player A	Player B									
	B ₁	B ₂	B_3	B_4						
A_1	2	2	3	-2						
A_2	4	3	2	6						

Q-3 (C) Solve the following game using graphical method.

[05]

Player A	Player B				
	B ₁	B ₂			
A ₁	-6	7			
A ₂	4	-5			
A ₃	-1	-2			
A ₄	-2	5			
A ₅	7	-6			

Q-4 (A) Give the difference between Charts of variables and charts of attributes.

[05]

Q-4 (B) Draw P - Chart from the following information and draw your conclusions.

Inspected Items	200	200	200	200	200	200	200	200	200	200	200	200	200	200	200
Defective Items	8	12	2	20	10	15	6	20	13	9	16	10	13	6	8

Q-4 (C) The number of defects in 20 cloth pieces are given below:

[05]

[05]

1, 4, 3, 2, 5, 4, 6, 7, 2, 3, 2, 5, 7, 6, 4, 5, 2, 1, 3, 8. Decide whether the process is under control or not.

OR

Q-4 (A) Write the meaning and uses of Statistical Quality Control.

[05]

Q-4 (B) From the factory producing piston rings sample of 200 rings are taken daily. The [05] record of defective rings is given below. Draw np Chart and draw your conclusion.

Date	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Defective Rings	18	10	20	20	26	20	26	12	15	17	31	34	32	13	10

Q-4 (C) Draw \overline{X} and R charts for following information and draw your conclusion.

[05]

Sample No.	1	2	3	4	5	6	7	8	9	10
\overline{X}	12.8	13.1	13.5	12.9	13.2	14.1	12.1	15.5	13.9	14.2
R	2.1	3.1	3.9	2.1	1.9	3.0	2.5	2.8	2.5	2.0

(for n = 5, A_2 = 0.577, D_3 = 0, D_4 = 2.11)

All the Best