	No. of printed pages: 03
	[16] FYBBA - ILSem. Examination
	Saturday, 11 April 2015
	UM 02 CBBF04 UM02CBBB06 - Business Statistics
	Note: Granh namer will be provided on a request
	Note: Graph paper will be provided on a request
1 4	
1 A.	data. Write difference between primary and secondary data. Write methods of collecting primary data.
P	
В.	Find mean, median and mode for the following data: Class $0-9$ 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 90-99
	f 3 4 12 33 59 92 50 25 11 1
С	Calculate S.D. and Coefficient of variation from data given below:
С.	Class 0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40
	f 14 26 32 45 39 12 9 2
	OR
A .	Define statistics. Discuss in brief the scope of statistics.
B.	In the frequency distribution of 100 families given below.
	Whose median is known to be 50. Find the missing frequency then find mode.
	Expenditure 0-20 20-40 40-00 60-80 80-100 No. of 14 2 27 2 15
	families 14 ? 27 ? 15
C.	Find Quartile Deviation, M.D. about mean, for the following distribution.
	Class 4-8 8-12 12-16 16-20 20-24 24-28 28-32 32-36 36-40
	f 5 8 18 25 15 12 10 5 2
2 A.	Define LPP. Write applications of LPP.
В.	Solve the following LPP by graphical method. Min $T = x + y$
	Sub. to $5x + 10y \le 50$
	$x + y \ge 2$
	$y \le 4$ x, y \ge 0
C	
C.	A firm manufactures three products A, B & C. The profits per unit are Rs. 3, Rs. 2 & Rs. 4 respectively. The firm has 2 machines G & H and given below is the required processing
	time for each machine on each product.

Machine	F	roduct		
I	Α	В	C	
G	4	3	5	5.4 (D .6
H	3	2	4	

Machine G & H have 2000 & 2500 machine minutes respectively. The firm must manufacture 100 A's, 200 B's & 50 C's but not more than 150 A's. Formulate the above problem as LPP.

					DR .			
Q.2 A.	Discuss various scope	of LPP	•		ing an a		-	[03]
В.	Solve the following L	inear Pr	ogramn	ning pr	blem b	y Gra phi	cal method.	[06]
	Maximize $Z = 5x_1 +$	7x ₂				136 V	1 i i fan se	
	Subject to $4x_1 + 5x_2$:	≤ 200						
	$3x_1 + 5x_2$	≤ 180						
	$2x_1 + 3x_2$	≤ 165		1			¢	
	$\mathbf{x}_1, \mathbf{x}_2 \ge 0$							
С.	Solve the following Li	inear Pr	ogramn	ning p	blem b	y graphi	cal method.	[06]
	Minimize $Z = 10x+5y$							
	Subject to $3x+5y \le 15$	0		n				
	5 x+4y ≥1()0		13.				
	$0 \le \mathbf{x} \le 30$)		-		1 1914 -		
	$0 \le y \le 15$	5						
	where $x, y \ge 0$				4	×. ·		
				褐	•			
Q.3 A.	What is Transportation	n Proble	m? Als	o deriv	e the m	athematic	cal form of T.P.	[05]
В.	Solve the following Transportation Problem by VAM:							[05]
		M ₁	M ₂	M3 *	M4	M5	Supply	
	F ₁	4	2	3 📿	2		8	
	F ₂	5	4	5	2	1	12	
	<u> </u>	6	5	4 🛓	7	3	14	
	Demand	8	4	6	8	8		
					÷.	. 25 -		
C.	Solve the following A	ssignme	ent Prob	lem to	maximi	ize the to	tal profit (in Rs.):	[05]
	· · · · · ·			D ₂	D ₃	<u>, D</u> 4	 `	
		O1	3	4	11	9		
		O ₂	5	7	8	9		
		O ₃	5	6	6	7		
		O ₄	4	6	8	8		
					9R			
Q.3 A.	Solve the following Tr	ransport	tation P	roblem	by (i) N	North We	st Corner Method &	: [09]
	(ii) Matrix Minima Me	ethod:						
	<u></u>	D_1		D3	D4	Supply		
	O_1	42	48	38	37	140		
	O ₂	40	49	52	51	130		

-	2	-
---	---	---

40

O₃

Demand 80

39

38

90

Ger .

110 160

43

170

B.	Solve the f	ollowing	minimal	assignment	problem:
					7 1

				Job	1		
	_	1	2	3	4	5	
Man	A	8	4	2	6	1	
	В	0	9	5	5	4	
	С	3	8	9	2	6	
	D	4	3	1	0	3	
	Ε	9	5	8	9	5	

Q.4 A. Define Time Series. Explain components of Time Series Analysis.

B. Find Trend by 3 yearly moving averages. Also find short time variations.

Year	1981	1982	1983	1984	1985	1986
Prod.	111	113	115	114	116	118
Year	1987	1988	1989	1990	1991	1992
Prod.	111	125	127	132	140	143

C. Compute the seasonal index for the following data:

Veen		Qua	arter	
rear	Ι	II	III	IV
1990	3.5	3.9	3.4	3.6
1991	3.5	4.1	3.7	4.8
1992	3.5	3.9	3.7	4.0
1993	4.0	4.6	3.8	4.5
1994	4.1	4.4	4.2	4.5
1995	4.2	4.6	4.3	4.7

OR

Q.4 A. What is analysis of time series? Write application of time series.

B. Calculate the trend values by the method of moving average, assuming a four yearly cycle [05] from the following data:

Year	1971	1972	1973	1974	1975	1976	1977	1978	1979	1980
t	37.4	31.1	38.7	39.5	47.9	42.6	48.4	64.6	58.4	38.6

C. Compute seasonal indices applying simple average method for following data.

Year	Summer	Monsoon	Winter
1981	112	110	115
1982	80	145	90
1983	95	100	80
1984	110	90	110
1985	85	110	85

[05]

[05]

[05]

[05]

[05]

[06]