SĽ

No. of printed pages: 2

SARDAR PATEL UNIVERSITY BBA (GEN) (II-Semester) Examination Thursday, 26 March 2015 2.30 - 4.30 pm

UM02CBBA05/10 - Business Mathematics - II

Total Marks: 60

Q.1(a)	Find n if								
	(1) $nP_3 = 6.nC_5$	(05)							
	$_{1}(2)$ (n+1)C ₆ : nC ₅ = 11:6	(05)							
(b)	How many words can be formed using all the letters of the word	ì							
	"SONA"? Out of them how many words								
	(1) Start with Vowel?	(05)							
	(2) Start with N?	. ,							
OR									
Q.1(a)	How many three digited numbers can be formed using the digits								
	1,2,4,5,6,7,8 ? How may of the are								
	(1) Even numbers ?	(05)							
	(2) Greater than 500?								
(b)	Find the number of committees of 5 members from 7 boys and 4 girls	(05)							
	can be formed such that each committee contains at least one girl.								
(c)	Evaluate :								
	(1) $20C_3 \times {}_{10}C_1$	(05)							
	(2) ${}_{10}P_2 \div {}_5P_0$	(05)							
Q.2(a)	d^2y	(05)							
	Obtain $\frac{dx^2}{dx^2}$ if $y = \log x$								
(b)	The cost function C of manufacturing a certain article is given by	(05)							
	$C = 2x^2 + \frac{105}{100} + 25$ where x is the number of articles manufactured								
	$x = \frac{1}{x}$ where x is the number of articles manufactured.								
	Find x for minimum value of C. Also find minimum cost.								
(c)	Obtain dy/dx if	(05)							
	$y = \frac{1-t}{1-t}$ and $y = \frac{t}{1-t}$	(05)							
	$y = \frac{1}{1+t}$ and $x = \frac{1}{1+t}$								
	OR								
Q,2(a)	Find the maximum and minimum values of	(05)							
	$f(x) = \frac{2}{x^2} + \frac{1}{x^2} + \frac{1}{x^2} + \frac{1}{x^2}$								
	$1(x) - \frac{1}{3}x + \frac{1}{2}x - 0x + 8$								
(b)	Write the rules of differentiation.	(05)							
	$(2r+3)^{6}$	(05)							
(c)	Find dy/dx if $y = \left(\frac{2\pi + 5}{4x + 5}\right)$								

(A-17)

Q.3(a) A sum of Rs. 4000 is invested for one year at 8% compound rate of (05) interest, if the interest is calculated quarterly, what is the effective rate of interest?

- (b) Explain the terms :
 - (1) Sinking Fund (2) Effective rate of interest
 - (3) Simple interest (4) Compound interest
- (c) The population of a city at present is 76162, which was 65673 before 5 (06) years. Find out the rate of growth of Population.

OR

- Q.3(a) Rekha Limited issued 50,000 debentures each of Rs. 100 to be redeemed (05) after 10 years. It was decided to create a sinking fund for this purpose and to invest it at 12.5% rate of compound interest. Find out the sum to be transferred to this fund at the end of every year.
 - (b) Cost of building a new house is Rs. 4,70,000 at present. If it increases at (05) 8% every year, find out the increased cost of a similar house if it is built after 3 years ?
 - (c) What is an aggregate amount for Rs. 4000 at 12% rate of compound (05) interest for 3 years if the interest is compounded every six months?
- Q.4(a)Write the uses and limitation of Linear Programming.(05)(b)Solve the following LPP by graphical method.(05)
 - Max Z = 200x + 300y
 - s.t. $3x + 3y \le 135$
 - $5x + 2y \le 180$
 - $y \le 2x, x, y \ge 0$

(c) Solve the following A.P.

	I	Π	III	IV
Α	0	7	14	21
В	12	17	22	27
С	12	17	22	27
D	18	22	26	30

OR

Q,4(a) Solve the following Transportation problem by (1) NWCM (2) VAM (10)

	A	В	С	D	Demand
P	15	10	17	18	2
Q	16	13	12	13	6
R	12	17	20	11	7
Supply	3	3	4	5	

- (b) Use the graphical method to solve the following LPP Max $Z = 3x_1 + 5x_2$
 - s.t. $3x_1 + 2x_2 \le 18$ $x_1 \le 4$ $x_2 \le 6, x_1, x_2 \ge 0$

####

(05)

(05)

(04)