SARDAR PATEL UNIVERSITY

NOVEMBER - DECEMBER : 2016 EXAMINATION, BBA (General) SEMESTER : I

WEDNESDAY, 23/11/2016

MORNING SESSON TIME: 10.00 TO 12.00 SUBJECT CODE: UM01CBBA07

BUSINESS MATHEMATICS - I

TOTAL MARKS: 60

[05]

[04]

Q-1	(A)	Define the terms:
		(1) Difference of two sets (2) Subset (3) Empty set

(4) Intersection and Union of two sets

(1) 1x - 31 < 4 in the form of an interval

(2) -3<x<7 in a modulas form.

Q-1 (C) If
$$A = \{-3, -2, 2, 0\}$$
, $B = \{3, 2, -2, 0\}$ then find (1) AUB (2) $A \cap B$ (3)A-B (4) B-A

OR

Q-1 (B) If A={1,3}, B={5,6}, C={6,9} then prove that [06]

(1) $AX(B \cap C) = (AXB) \cap (AXC)$ (2) $AX(BUC) = (AXB) \cup (AXC)$

Q-2 (A) Solve the following equations using Cramer's rule. [05] 2(x-1) + 3(y+1) = 15

Q-2 (B) Solve the following system of equations using matrix method. [06]
$$3x - 2y + z = 2$$

$$x + 3y - 2z = 2$$

 $2x - y + z = 2$

2(y+3) - 2(x-2) = 6

(1) Transpose of a matrix (2) Identity matrix

OR

Q-2 (A) If
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$$
 then find A² – 5A 14I [05]

Q-2 (B) If
$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$ then check
$$(1) (A+B)^{T} = A^{T} + B^{T} (2) (AB)^{T} = B^{T} A^{T}$$

Q-2 (C) Write the rules of determinant. [04]

Q-3 (A) Find the equation of a line passing through the point (x_1, y_1) and having slope m. [05]

Q-3 (B) Find the area of a triangle with vertices A(1,1) B(2,3) and C(-2,2). [05]

Q-3 (C) Find x if $d\{(x,-4), (-8,2)\} = 10$. [05]

OR

Q-3 (A) Find the equation of a line passing through the point $A(x_1, y_1)$ and $B(x_2, y_2)$. [05]

Q-3 (B) Find the equation of a line passing through the point (-2,5) and making equal [05] intercepts on the co-ordinance axes.

Q-3 (C) Find the equation of a line passing through the intersection of x-y+2=0 and [05] 2x+3y-6=0 and parallel to x-2y+5=0.

Q-4 (A) Evaluate the following: [12]

(1)
$$\lim_{x \to 2} \frac{x^2 - 4}{x^3 - 8}$$

(2)
$$\lim_{x \to 0} \frac{13^x - 7^x}{3x}$$

(3)
$$\lim_{x \to a} \frac{x^{16} - a^{16}}{x^8 - a^8}$$

Q-4 (B) Write the rules for limit. [03]

OR

Q-4 (A) Evaluate the following:

(1)
$$\lim_{x \to 3} \frac{\sqrt{x+5} - 2\sqrt{2}}{\sqrt{x-1} - \sqrt{2}}$$
 [05]

(2)
$$\lim_{n \to \infty} 4 \left[\frac{1^3 + 2^3 + \dots + n^3}{n^4} \right]$$
 [05]

Q-4 (B) If
$$f(x)=x^2$$
 then evaluate
$$\lim_{x \to 0} \frac{f(x+2) - f(x-2)}{x}$$
 [05]

All the Best