
(73)

SARDAR PATEL UNIVERSITY
 B.B.A. (General) EXAMINATION
 SEMESTER - I (CBCS) (Regular)
 Friday, 22 $^{\text {nd }}$ November 2013
 UM01CBBA07: BUSINESS MATHEMATICS

Time: - $2.30 \mathrm{p} . \mathrm{m}$. to $4.30 \mathrm{p} . \mathrm{m}$.
Total Marks: -
Note: Figures to the right indicate marks.
Q. 1
(a) Let $\mathrm{A}=\{x /-1 \prec x \prec 5, x \in Z\}, \mathrm{B}=\{2,4,5\}$ and $\mathrm{C}=\{1\}$ then
(1) Compute $A \cup B, B \cap C, B \times C$
(2) Verify that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$.
(b) i) Solve: $|x-3|=1$.
ii) If $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{B}=\{2,4,6,7\}$ then find $\mathrm{A} \triangle \mathrm{B}$.
(c) Verify following by Venn Diagram:

1. $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
2. $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
Q. 1 OR
(a) Define following terms with example:
3. Intersection of two sets
4. Subset
5. Power set
(b) State and Verify Demorgan laws for two sets A and B by taking
(c) i) Express the following inequalities in a Modulus form: $-3<x<8 \quad 05$
ii) Express $3.6666 \ldots$ into quotient form.
Q. 2
(a) Solve the following equations by using Cramer's rule:
$2(x-1)+3(y+1)=15$,
$2(y+3)-2(x-2)=6$
(b) If $A=\left[\begin{array}{ccc}1 & 3 & 4 \\ 3 & -1 & 2 \\ 2 & 3 & 1\end{array}\right], \quad B=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 3 & -1 \\ 3 & 5 & 2\end{array}\right]$ and $C=\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2 \\ 1 & 3 & 0\end{array}\right]$

Then find

1. $\mathrm{A}-\mathrm{B}$
2. $A+B+C$
3. $A-B+2 C$
(c) If $\mathrm{A}=\left[\begin{array}{ll}3 & 7 \\ 2 & 5\end{array}\right]$. Then find $A+A^{T}+A^{2}$.
Q. 2

OR

(a) Explain following terms with example:

1. Zero matrix
2. Diagonal matrix
(b) If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 3 & -1 \\ -3 & 0 & 3\end{array}\right]$ and $B=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 1 & 2 \\ 1 & 3 & 0\end{array}\right]$, find $A B$ and $B A$. Show that $A B \neq B A$. 05
(c) Solve following by using inverse matrix.
$x+3 y+z=1$
$x+y+2 z=1$
$x+2 y+3 z=1$
Q. 3
(a) Find the equation of a line Parallel to the line $2 x-3 y-5=0$ and passing through the point $(4,5)$. Also find the intercepts of the obtained line.
(b) Find b if the distance between $(-3,-2)$ and $(b, 1)$ is $3 \sqrt{10}$.
(c) Show that the points $(2,3),(6,5)$ and $(12,8)$ are collinear.
Q. 3

OR
(a) Prove that the equation of line having slope m and passing through
$\left(x_{1}, y_{1}\right)$ is $y-y_{1}=m\left(x-x_{1}\right)$.
(b) Find the equation of line passing through the points $(0, \boldsymbol{2})$ and $(2,1)$.

Also find its slope and intercepts on the axes.
(c) i) Find the slope of the line joining the points $A(2,4)$ and $B(3,5)$.
ii) Find the equation of line having slope 3 and the intercept on Y - axis as 6 .
Q. 4
(a) Evaluate: $\lim _{x \rightarrow 2} \frac{x^{2}-4}{\sqrt{3 x-2}-\sqrt{x+2}}$
(b) If $f(x)=\frac{1}{x}$, then find $\lim _{x \rightarrow 3}\{f(1 / x)+f(-x)\}$
(c) Evaluate following:

1. $\lim _{x \rightarrow 0} \frac{5^{x}-2^{x}}{4 x}$
2. $\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x^{2}-9}$
Q. 4

OR
(a) Evaluate following:

1. $\lim _{x \rightarrow 1} \frac{x^{3}-2 x^{2}+2 x-1}{x-1}$
2. $\lim _{x \rightarrow a} \frac{x^{-3}-a^{-3}}{x^{-2}-a^{-2}}$
3. $\lim _{x \rightarrow 3} \frac{\sqrt{x+5}-2 \sqrt{2}}{\sqrt{x-1}-\sqrt{2}}$
(b) Write working rules for limit.
