[06]

No. of printed pages: 02

SARDAR PATEL UNIVERSITY F Y BBA (ISM) (I Sem.) Examination Thursday, 6th December 2012 10.30 am - 12.30 pm UM01CBBS07 - Business Mathematics

Total Marks: 60

Note: Figures to the right indicate marks.

Q.1	Evenue of the form of an interval	[04]
(a)	Express $ x - 4 < 7$ in the form of an interval.	[04]
(D)	State De Morgan's laws for two sets A and B and verify it for the	[06]
	$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ A = $\{1, 3, 5, 7\}$ and B = $\{2, 4, 6, 8\}$	
(c)	If $A = \{1, 3, 4, 6\}$ and $B = \{2, 3, 6, 7\}$ then find	
(0)	(i) $\Delta \mathbf{x} \mathbf{B}$ (ii) $\Delta \cup \mathbf{B}$ (iii) $\Delta \cap \mathbf{B}$ (iv) $\Delta = \mathbf{B}$ (v) $\mathbf{B} \mathbf{x} \Delta$	[05]
		[00]
Q.1		
(a)	Write the properties of absolute value.	[04]
(b)	If $A = \{0, 1, 2, 3, 4\}$, $B = \{2\}$ and $C = \{3\}$ then show that	[06]
(-)	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$	1001
(c) (d)	Express $-7 < x < 8$ in a modulus form. Solve the following equation	[03] [02]
(4)	$ \mathbf{x} - \mathbf{l} = 0.1$	[02]
Q.2		
(a)	State the properties of 3 x 3 determinants.	[05]
(D)	Solve the following equations using Cramer's vale. $4 - 3 - 5 - 2$	[05]
	$\frac{4}{x} + \frac{5}{y} = 6$ $\frac{5}{x} + \frac{2}{y} = 5$	
		[05]
(c)	If $A = \begin{bmatrix} 0 & -1 \\ -3 & -3 \end{bmatrix}$ then find A^2	[]
(0)	$\begin{array}{c} \mathbf{n} \mathbf{A} = \begin{bmatrix} 1 & -5 & -5 \end{bmatrix} \text{ uter find } \mathbf{A} \\ \begin{bmatrix} 1 & 4 & 4 \end{bmatrix}$	
Q.2		
(a)	Explain the following terms with examples.	[04]
	(i) Skew-symmetric matrix	
(h)	(II) Identity matrix	[05]
(U)	ax + a - bx	[03]
	bx + b = cy = 0	
	$\begin{bmatrix} 0 & 1 & 0 \\ 0 & y \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & y \end{bmatrix}$	
	$\left c_{A} + c_{A} - a_{Z} \right $	

- (c) Obtain the inverse of following matrix.
 - $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 3 \\ 3 & 2 & 1 \end{bmatrix}$

Q.3

- (a) Obtain the equation of a line having slope m and passing through [05] (x_1, y_1) .
- (b) Find the slope of line joining the points (1, 0) and (2, -1). Does the point [05] (2, 2) lie on this line?
- (c) A line passes through the point of intersection of the lines [05] 5x + 2y 11 = 0 and 3x y + 11 = 0 and it is perpendicular to 4x 3y + 2 = 0. Find its equation.

OR

- Q.3
 - (a) Find the equation of a line perpendicular to the line joining (3, 2) and [05] (4, 0) and passing through (5, 7).
 - (b) Obtain the equation of the straight line passing through the point of [05] intersection of the lines y = 2x + 1 and y = x + 2 and parallel to the line y = 4x + 7.
 - (c) If the lines ax+by+1 = 0 and x+y+1 = 0 are perpendicular and their [05] point of intersection is (1, -2) then find the values of "a" and "b".

Q.4

(a) State the rules of limits.

(b) Evaluate
$$\lim_{x \to 1} \frac{\sqrt{x+2} - \sqrt{3}}{(x-1)}$$
 [06]

(c) If
$$f(x)=x^2+5$$
 then find
$$\lim_{h \to 0} \frac{f(3+h)-f(3)}{h}$$
OR
[05]

Q.4

(a) Evaluate
$$\lim_{x \to 2} \left[\frac{1}{(x-2)} - \frac{2}{(x^2 - 2x)} \right]$$
 [05]

(b) Evaluate
$$\lim_{x \to 0} \frac{a^x - b^x}{x}$$
 [05]

(c) Evaluate
$$\lim_{x \to 2} \frac{x^4 - 16}{(x - 2)}$$
 [05]

[04]