Note:- Answers of all the questions (including multiple choice questions) should be written in the provided answer book only.

No. of printed pages: 03

SARDAR PATEL UNIVERSITY F.Y.B.B.A. (GEN) EXAMINATION SEMESTER - I (CBCS) Saturday, 20th November 2010 UM01CBBA05: BUSINESS MATHEMATICS - I

	ime: - 2.30 p.m. to 4.30 p.m. ote: Figure to the right indicate marks.	Total Marks: - 60	
Q.1	see. I iguie to the light indicate marks.		
(a)	Let $A = \{x/-1 < x < 5, x \in Z\}$, $B = \{2, 4, 5\}$ and $C = \{1\}$ then (1) Compute $A \cap B$, $A \cap C$, $B \times C$	I	[05]
	(2) Verify that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.		
(b)	Define following terms: 1. Union of two sets 2. Intersection of two sets	-	[05]
	3. Subset 4. Singleton set 5. Null set		
(c)	 i) Express the following in the form of an interval: x - 5 < 7 ii) Express the following inequalities in a Modulus form: -7 < x < 8 	1	[05]
Q.1	·		
(a)	If $A = \{1, 2, 5, 6, 9\}$, $B = \{2, 4, 6, 8\}$ and $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ the State and verify De Morgan's laws.	en [[05]
(b)	If A=set of the letters of the word 'HUMAN' B= set of the letters of the word 'WOMAN' C= set of the letters of the word 'MAN'	l	[05]
	Then verify that 1) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. 2) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.		
(c)	 i) Express 0.0232323into quotient form. ii) Find power set of A= {1, 2, 3}. 	I	[05]
Q.2			
V.m	[1 3 2]		
(a)	Let $A = \begin{bmatrix} 1 & 3 & 2 \\ 3 & 1 & 2 \\ 2 & 4 & 1 \end{bmatrix}$. If exists, find A^{-1} .		[04]
(b)	i) Solve the following equations by Inverse of matrix: 2x + 3y = 10, x + 6y = 4		[04]
	ii) Explain the term: Transpose Matrix.	1	[02]

(c) Prove that
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ xyz & xyz & xyz \end{vmatrix} = xyz(x-y)(y-z)(z-x).$$
 [05]

OR

Q.2

(a) Solve the following equations by Cramer's rule: $2x-y=1$, $7x-2y=-7$

(b) If $A = \begin{bmatrix} -5 & 2 \\ -6 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & -3 \\ 3 & -1 \end{bmatrix}$, then 1. Verify that $(A+B)^2 = A^T + B^T$. 2. Find $|A|$ and $|B|$.

(c) i) If $A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ Then find $A^2 - 5A - 14I$ [04]

ii) Explain the term: Symmetric Matrix. [02]

Q.3

(a) Show that the equation of the line passing through (x_1, y_1) with slope m is $y-y_1 = m(x-x_1)$.

(b) Find the equation of a line passing through the point $(2, 5)$ and making equal intercepts on the event of the co-ordinate axes.

(c) i) Find the equation of line passing through the points $(1, 0)$ and $(2, -1)$. Also find its slope and intercepts on the axes.

ii) Show that the three lines $x + y - 5 = 0$, $x + 6y = 0$ and $x - y - 7 = 0$ are concurrent. Also find the point of concurrence.

OR

Q.3

(a) Find the equation of a line passes through the intersection of $x - y + 2 = 0$ and $2x + 3y - 6 = 0$ and parallel to $x - 2y + 5 = 0$.

Find the equation of line having slope $\frac{1}{5}$ and which passes through the point of intersection of the lines $x - 4y + 18 = 0$ and $x - y - 12 = 0$

(b) Explain the term: Slope of a line. Find the slope of the line joining the points $A(3, 4)$ and $B(5, 8)$.

[03]

ii) Find a if the distance between (-3, -2) and (a, 1) is $3\sqrt{10}$.

Q.4

(a) Evaluate following:

[11]

- 1. $\lim_{x\to 2} \frac{x^3 x 6}{x^2 4}$
- 2. $\lim_{x \to 3} \frac{3 x}{\sqrt{3 + x} \sqrt{6}}$
- 3. $\lim_{x\to 0} \frac{49^x 27^x}{4x}$ (b) Write working rules for Limit.

[04]

Q.4

[11]

- (a) Evaluate following:
 - 1. $\lim_{x \to 1} \left[\frac{1}{x-1} \frac{2}{x^2 1} \right]$
 - 2. $\lim_{x \to 0} \left\{ 1 + \frac{2}{3 + \frac{4}{x}} \right\}$
 - 3. $\lim_{x \to 3} \frac{x^3 27}{x^2 9}$
- (b) If $f(x) = x^2$, evaluate $\lim_{x \to 0} \frac{f(x+4) f(x-4)}{x}$ [04]