SARDAR PATEL UNIVERSITY BBA (ISM) (I Semester) Examination Friday, 15 June 2012 11am - 1 pm

UB01CBBI07 - Business Mathematics

Total Marks : 60

Q.1		
(a)	Define the following terms : (1) Subset (2) Null set (3) Complement of a set	[05]
	(4) Universal set (5) Singleton set.	[00]
(b)	If A={5,6,7}, B={7,8} and C={5,8} then verify the following. (1) Ax (B - C) = (A x B) - (A x C) (2) A + (B \bigcirc C) = (A + B) \bigcirc (A + (C)	[05]
(c)	Prove that $\sqrt{2}$ is an irrational number	[05]
()	OR	
Q.1		
(a)	Express (1) 0.1666 into a quotient form. (2) $0 \le x-3 < 2$ in the form of an interval.	[03] [02]
(b) (c)	 State and prove De 'Morgan's laws by taking proper example. Define the terms with example. (1) Difference of two sets. (2) Intersection of two sets. (3) Union of two sets. 	[05] [05]
Q.2 (a)	If A = $\begin{bmatrix} 4 & -1 \\ -1 & 3 \\ 2 & 0 \end{bmatrix}$ and B = $\begin{bmatrix} -2 & 5 \\ 3 & -1 \\ 5 & 2 \end{bmatrix}$	[05]
	and C= $\begin{bmatrix} 2 & 4 \\ -1 & -5 \\ 3 & -2 \end{bmatrix}$ then find (1) A+B (2) A+B+C (3) 3A-2B+2C	
(b)	If $A = \begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ then find (1) $AB+B^{-1}A^{-1}$	[06]
(c)	Solve the following equations using Cramer's rule 2(x-1) + 3(y+1) = 15 2(y+3) - 2(x-2) = 6	[04]
	OR	

1

(23)

Q.2 (a)	Write the properties of determinant.	[05]
(b)	If $A = \frac{1}{3} \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{vmatrix}$ then check whether A is orthogonal or not. Also	[05]
(c)	define symmetric matrix with example. Solve the following equations using inverse of a matrix. 2x + y = 4, $5x + 3y = 9$	[05]
Q.3 (a)	Find the equation of a line passing through the points (-1,2) and (5,-3). Also find its close and intercepts on the axes	[05]
(b) (c)	Find the equation of the line passing through a point A $(x_1 y_1)$ and having slope m. Find x if d{ $(x_1,4)$, (-8,2)} = 10	[05] [05]
Q.3	<u>OK</u>	
(a)	Find the equation of a line passing through the points of intersection of the lines $x+2y-1=0$ and $2x+3y-4=0$ and making equal intercepts on both the axes.	[05]
(b)	Find the equation of a line making intercepts a and b on X-axis and Y-axis respectively. Find the equation of a line passing through the point of intersection of the lines $x-4y+18=0$ and $x+y-12=0$ whose slope is 2	[05]
(c)		[05]
Q.4		
(a) (b)	Write the rules for limit. Evaluate	[05]
	1. $\lim_{x \to 0} \frac{2^{5x} - 5^{2x}}{3^{2x} - 2^{3x}}$	[05]
	2. $\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{2n^3}$	[05]
	OR	
Q.4 (a)	If $f(x) = \frac{1}{x}$ then find $\lim_{x \to 3} \left[f\left(\frac{1}{x}\right) + f(-x) \right]$	[05]
(b)	Evaluate $\lim_{x \to 2} \frac{\sqrt{x^2 + x - 3} - \sqrt{x + 1}}{x - 2}$	[05]
(c)	1. $\lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9}$	[02]
	2. $\lim_{\eta \to \infty} \left(\frac{n+3}{n}\right)^n$	[03]

2