[33]

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

BBA (ISM) (I Semester) (CBCS) Examination Friday, 22nd April, 2016 2.30 – 4.30 pm

UM01CBBS07 - Business Mathematics

Total Marks: 60

Q1	[1]	Define the terms with illustration: (1) Intersection of two sets (2) Symmetric difference of two sets	[4]
	[2]	Find $A \times B$, $A \triangle B$, $A \cap B$, $A - B$, $A \cup B$, if $A = \{a, b\} \& B = \{e, b\}$	r}. [5]
	[3]	If $A = \{1, 2, 3\}$, $B = \{1, 2\}$ & $C = \{2, 3\}$ than prove distributive laws.	[6]
		OR	
Q1	[1]	Express $-5 < x < 8$ in modulus form.	[4]
	[2]	Express 0.0272727 into quotient form.	[5]
	[3]	Express the following in the form of interval. (1) $ x-5 < 2$ and (2) $ x+7 < 1$.	[6]
Q2	[1]	Write the properties of determinants.	[4]
	[2]	If $\begin{pmatrix} x & x+y \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 7 \\ 4 & 3 \end{pmatrix}$, find x and y.	[5]
	[3]	Solve the following system of equations using inverse of matrix. x + y + z = 3 x + 2y + 3z = 6 3x + y + 2z = 6.	[6]
Q2	[1]	Using Cramer's rule, solve the following equation. 5x + 3y = 4 3x - 2y = 7	[4]
	[2]	If $A = \begin{pmatrix} 0 & 4 & 3 \\ 4 & -3 & -3 \\ 1 & 4 & 4 \end{pmatrix}$, than show that $A^2 = I$.	[5]
			(PTO)

[3] If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, then prove that $A^2 - 4A = 5I$ and use it to find A^{-1} . [6]

- Q3 [1] Find the distance between the points (4, 3) and (-9, -2). [4]
 - Find the equation of the line whose slope is 2 and which passes through the point of intersection of the lines x 4y + 18 = 0 and x + y 12 = 0.
 - [3] Find the equation of line passing through the point of intersection of the lines 5x + y + 4 = 0 & 2x + 3y 1 = 0 & is perpendicular to 2x y 8 = 0.

OR

Q3 [1] Show that the three lines
$$x + y - 5 = 0$$
, $x + 6y = 0$ and $x - y - 7 = 0$ are [4] concurrent.

- [2] Find k if the points (2, 3/2), (-3, -7/2) and (k, 9/2) are collinear. [5]
- [3] Find the equation of the line which passes through the point of intersection of the lines x + 2y 1 = 0 and 2x + 3y 4 = 0 and makes equal intercept on both axis.

Q4 [1] Evaluate:
$$\lim_{x \to -1} \frac{x^2 + 3x + 2}{x + 2}$$
 [4]

[2] Evaluate:
$$\lim_{\mathbf{x}\to 3} \frac{\sqrt{\mathbf{x}+5}-2\sqrt{2}}{\sqrt{\mathbf{x}-1}-\sqrt{2}}$$
 [5]

[3] Evaluate:
$$\lim_{n \to \infty} \frac{1^2 + 2^2 + \dots + n^2}{2n^3}$$
 [6]

OR

[2] Evaluate:
$$\lim_{x \to a} \frac{x^{16} - a^{16}}{x^8 - a^8}$$
 [5]

[3] Evaluate:
$$\lim_{n \to \infty} \left(\frac{n}{n+4} \right)^{5n+3}$$
 [6]