56-3

[29] Seat No.

No. of printed pages: 2

SARDAR PATEL UNIVERSITY

B.B.A. (General) (I Semester) Examination Friday, 22nd April 2016

2.30 pm - 4.30 pm

UM01CBBA07: BUSINESS MATHEMATICS

Total Marks: 60

Note: Figure to the right indicate full marks.

Q.1

(a) Define the terms with examples.

[05]

- (1) Union of two sets
- (2) Subset
- (3) Difference of two sets
- (4) Null set
- (5) Singleton set.
- (b) Express

[05]

- (1) |x+5| < 1 in the from of an interval.
- (2) 0.0272727..... into quotient form.
- (a) If A = [1 2 5 6 0] B = [2 4 6

(c) If A = {1, 2, 5, 6, 9}, B = {2, 4, 6, 8} and C = {2, 5, 10} then state and verify Distributive laws.

[05]

OR

Q.1

(a) If $A = \{1,3\}$, $B = \{5,6\}$ and $C = \{6,9\}$ then verify,

[05]

- $(1) \ A \times (B \cap C) = (A \times B) \cap (A \times C)$
- (2) $A \times (B \cup C) = (A \times B) \cup (A \times C)$

[05]

- (b) Express, (1) -3 < x < 8 in a modules form
 - (1) -3 < x < 8 in a modules form
 - (2) $0 \le |x+3| \le 1$ into an interval form.

(c) Write De' Morgan laws and verify it for following. A = {1, 2, 4, 6, 8}, B = {2, 3, 6, 7, 9} and [05]

 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

Q.2

(a) Solve by Cramer's rule :

[05]

2x + 5y = 4, 3x - 2y = 7

. .

(b) Solve the following system of equations using inverse of a matrix. x + y + z = 3, x + 2y + 3z = 6, 3x + y + 2z = 6.

[06]

[04]

- (c) Define the terms. (1) Square matrix
- (2) Transpose of a matrix
- (3) Indentity matrix
- (4) Null matrix.

OR

Q.2

(a) Solve by Cramer's rule.

[05]

$$\frac{7}{x} + \frac{3}{y} = -4$$
, $\frac{3}{x} - \frac{4}{y} = -7$

(b) If
$$A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 \\ 3 & 4 \end{bmatrix}$ then prove that (1) $(AB)^T = B^TA^T$ (2) $(A + B)^T = A^T + B^T$ (2) Write the rules of determinant. [04]

Q.3

(a) Find the equation of a line passes through the intersection of $x - y + 2 = 0$ and $2x + 3y - 6 = 0$ and parallel to $x - 2y + 5 = 0$ (b) Check that the lines $x + y - 5 = 0$, $x + 6y = 0$ and $x - y - 7 = 0$ are concurrent or not. (c) Obtain the equation of a line passing through a point $A(x_1, y_1)$ and having slope m.

OR

Q.3

(a) Find the equation of a line passing through the point (2,3) and making equal intercepts on both axes. (b) Find 'x' if $d\{(x, -4), (-8, 2)\} = 10$ (c) Find the equation of a line passing through the points $(1,0)$ and $(2, -1)$. Does the point $(2, 2)$ lie on the line?

Q.4

(a) Write the rules for limit. [03]

(b) Evaluate, $(1) \lim_{x \to 3} \frac{x^3 - 27}{x^2 - 9}$ [04]

(c) $\lim_{x \to 1} \left[\log x + \frac{1 - x}{1 - \sqrt{x}} \right]$ [04]

(d) $\lim_{x \to 3} \frac{\sqrt{x} + 2 - \sqrt{5}}{x - 3}$ [04]

Q.4 Evaluate, $\lim_{x \to 6} \frac{\sqrt{x} + 1 - \sqrt{x} + 1}{x - \sqrt{x}}$ [05]

Q.5 $\lim_{x \to 6} \frac{\sqrt{x} + 1 - \sqrt{x} + 1}{x - \sqrt{x}}$ [05]

Q.6 Evaluate, (1) $\lim_{x \to \infty} \frac{\sqrt{x} + 2 - \sqrt{5}}{x - 3}$ [05]

Q.7 Evaluate, (2) $\lim_{x \to 6} \frac{7^x - 3^x}{x}$ [05]

Q.8 Evaluate, (1) $\lim_{x \to \infty} \frac{\sqrt{x} + 1 - \sqrt{x} + 1}{x - \sqrt{x}}$ [05]

Q.9 Ilim $\frac{7^x - 3^x}{x - 9}$ [05]

 $\lim_{x \to 0} \frac{f(x+4) - f(x-4)}{x}$