No. of printed pages: 2

SARDAR PATEL UNIVERSITY B B A (I Semester) Examination 28 April 2015 (Tuesday) 2.30 - 4.30 pm UM01CBBS07 – Business Mathematics

		Total M	larks : 60
Q1	[1]	Define the terms with illustration:	[4]
		 (2) Compliment of a set A (3) Union of two sets (4) Symmetric difference of two sets 	
	[2]	Find $A \times B$, $A \Delta B$, $A \cap B$, $A - B$, $A \cup B$, if $A = \{-3, -2, 2, 0\}$ and $B = \{3, 2, -2, 0\}$.	[5]
	[3]	If U= $\{1, 2, 3, 4\}$, A = $\{1, 2\}$ & B = $\{2, 3\}$ than prove De-Morgan's laws.	[6]
		OR	
Q1	[1]	Express $-3 < x < 8$ in modulus form.	[4]
	[2]	Express 0.0272727 into quotient form.	[5]
	[3]	Express the following in the form of interval.	[6]
		(1) $ x-3 < 2$ and (2) $ x+5 < 1$.	
Q2	[1]	Using Cramer's rule, solve the following equation. 2x + 3y = 4 3x - 2y = 7	[4]
	[2]	If $A = \begin{bmatrix} 3 & 7 \\ 2 & 5 \end{bmatrix}$, find $A + A^T + A^{-1}$	[5]
	[3]	Solve the following system of equations using inverse of matrix. x + y + z = 3 x + 2y + 3z = 6 3x + y + 2z = 6.	[6]
		OR	

1

[47]

Q2 [1]

Write the properties of determinants.

[2] If
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$$
, than show that $A^2 - 5A - 14I = 0$. [5]

[3] If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
, then prove that $A^2 - 4A = 5I$ and use it to find A^{-1} . [6]

Q3 [1] Find the distance between the points
$$(-2, 3)$$
 and $(-9, -2)$. [4]

- [2] Find the equation of the line whose slope is 2 and which passes through [5] the point of intersection of the lines x 4y + 18 = 0 and x + y 12 = 0.
- [3] Find the equation of the line which passes through the point of [6] intersection of the lines x + 2y 1 = 0 and 2x + 3y 4 = 0 and makes equal intercept on both axis.

OR

Q3	[1]	Show that the three lines $x + y - 5 = 0$, $x + 6y = 0$ and $x - y - 7 = 0$ are	[4]
		concurrent.	
	[2]	Find k if the points $(2, 3/2)$, $(-3, -7/2)$ and $(k, 9/2)$ are collinear.	[5]
	[3]	Find the equation of line passing through the point of intersection of the	[6]

lines 5x + y + 4 = 0 & 2x + 3y - 1 = 0 & is perpendicular to 2x - y - 8 = 0.

Q4 [1] Evaluate:
$$\lim_{x \to 3} \frac{x^2 + 2x - 15}{x^2 - 9}$$
 [4]

[2] Evaluate:
$$\lim_{x \to 3} \frac{\sqrt{x+5} - 2\sqrt{2}}{\sqrt{x-1} - \sqrt{2}}$$
 [5]

[3] Evaluate:
$$\lim_{n \to \infty} \left(\frac{n}{n+4}\right)^{5n+3}$$
 [6]

OR

Q4 [1] Write the rules of limits. [4] $\frac{x^{16} - a^{16}}{x^8 - a^8}$ [2] **Evaluate :** lim [5] $x \rightarrow a$ $\frac{1^2+2^2+\ldots+n^2}{2n^3}$ [3] **Evaluate :** lim [6] $n \rightarrow \infty$

2

[4]