[44] No. of printed pages: 2

SARDAR PATEL UNIVERSITY B B A (I Semester) Examination 28 April 2015 (Tuesday)<br>2.30-4.30 pm<br>UM01CBBIO7 - Business Mathematics

Total Marks : 60

Q1 [1] Define the terms with illustration:
(1) Null Set
(2) Compliment of a set A
(3) Union of two sets
(4) Intersection of two sets
[2] If $A=\{1,3\}, B=\{5,6\}$ and $C=\{6,9\}$, then
(1) Prove that $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(2) Find A $\Delta B, B-C$.
[3] Express the following in the form of interval.
(1) $|x-3|<2 \quad$ and
(2) $|x+5|<1$

OR
Q1 [1] Express - $7<\mathbf{x}<\mathbf{8}$ in modulus form.
[2] Express 0.0232323... into quotient form.
[3] If $U=\{1,2,3,4\}, A=\{1,2\} \& B=\{2,3\}$ than prove De-Morgan's laws.

Q2 [1] Using Cramer's rule, solve the following equation.
$2 \mathrm{x}+3 \mathrm{y}=4$
$3 x-2 y=7$
[2] If $\mathrm{A}=\left[\begin{array}{ll}2 & 3 \\ 4 & 1\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{cc}0 & -1 \\ 1 & 2\end{array}\right]$
then find a $2 \times 2$ matrix $X$ such that $2(X+A)=3[X+1 / 2(A+B)]+C$.
[3] Solve the following system of equations using inverse of matrix.

$$
\begin{aligned}
& x+y+z=3 \\
& x+2 y+3 z=6 \\
& 3 x+y+2 z=6
\end{aligned}
$$

## OR

Q2 [1] Write the properties of determinants.
[2] If $A=\left[\begin{array}{ll}3 & 2 \\ 5 & 3\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right]$, find $A B+B^{-1} A^{-1}$.
[3] Show that $A$ is an orthogonal matrix if $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$

Q3 [1] Find the distance between the points $(-2,3)$ and $(-9,-2)$.
[2] Find $k$ if the points $(2,3 / 2),(-3,-7 / 2)$ and $(k, 9 / 2)$ are collinear.
[3] Find the equation of the line which passes through the point of [6] intersection of the lines $x+2 y-1=0$ and $2 x+3 y-4=0$ and makes equal intercept on both axis.

## OR

Q3 [1] Show that the three lines $x+y-5=0, x+6 y=0$ and $x-y-7=0$ are concurrent.
[2] Find the equation of the line whose slope is 2 and which passes through the point of intersection of the lines $x-4 y+18=0$ and $x+y-12=0$.
[3] Find the equation of line passing through the point of intersection of the lines $5 x+y+4=0 \& 2 x+3 y-1=0 \&$ is perpendicular to $2 x-y-8=0$.

Q4 [1] Evaluate: $\lim _{x \rightarrow 3} \frac{x^{2}+2 x-15}{x^{2}-9}$
[2] Evaluate: $\lim \quad x^{16}-a^{16}$

$$
\begin{equation*}
x \rightarrow a \quad x^{8}-a^{8} \tag{5}
\end{equation*}
$$

[3] Evaluate: $\lim _{n \rightarrow \infty}\left(\frac{n}{n+4}\right)^{5 n+3}$
OR
Q4 [1] Write the rules of limits.
[2] Evaluate : $\lim \sqrt{x+2}-\sqrt{5}$

$$
\begin{equation*}
x \rightarrow 3 \quad x-3 \tag{5}
\end{equation*}
$$

[3] Evaluate: $\lim _{\mathrm{n} \rightarrow \infty} \frac{1^{2}+2^{2}+\ldots+n^{2}}{2 n^{3}}$

